

OCTOBER 1992

INVESTIGATION OF

FORMER

UNDERGROUND

SOLVENT PRODUCT

TANKS

FACILITY AT

3200 MAIN STREET

KEOKUK, IOWA

Prepared for United Technologies Automotive Systems, Inc. Hartford, Connecticut July 1993

Woodward-Clyde

Woodward-Clyde Consultants P.O. Box 3777 5055 Antioch Road Overland Park, Kansas 66203

RCRA RECORDS CENTER

RECEIVED

JUL 27 1993

IOWA SECTION

■ ■ ■ ■ OCTOBER 1992

INVESTIGATION OF

FORMER

UNDERGROUND

SOLVENT PRODUCT

TANKS

RECEIVED

HUL U7 1993

TEMEDIATION GROUP

FACILITY AT

3200 MAIN STREET

KEOKUK, IOWA

Prepared for United Technologies Automotive Systems, Inc. Hartford, Connecticut July 1993

Woodward-Clyde Consultants P.O. Box 3777 5055 Antioch Road Overland Park, Kansas 66203

Project Number 91C7343

TABLE OF CONTENTS

Section	<u>on</u>	Page
1.0	INTRODUCTION	1-1
2.0	BACKGROUND	2-1
3.0	INVESTIGATION ACTIVITIES AND METHODS 3.1 FIELD INVESTIGATION 3.1.1 Soil Sampling 3.1.2 Monitoring Well Installation 3.1.3 Groundwater Sampling 3.1.4 Surveying 3.1.5 Resampling of MW-13 Well Cluster	3-1 3-1 3-1 3-2 3-4 3-5
4.0	RESULTS 4.1 SITE HYDROGEOLOGY 4.2 GROUNDWATER SAMPLING RESULTS	4-1 4-1 4-4
5.0	CONCLUSIONS	5-1
6.0	RECOMMENDATIONS	6-1

LIST OF TABLES

TABLE 1	SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS
	AND WATER LEVELS
TABLE 2	SUMMARY OF ANALYTICAL RESULTS, NOVEMBER 1992
	GROUNDWATER SAMPLES
TABLE 3	PHYSICAL PROPERTIES OF CONTAMINANTS DETECTED IN
	GROUNDWATER NOVEMBER 1992
TABLE 4	COMPARISON OF ANALYTICAL RESULTS FOR MONITORING
	WELL MW-13 CLUSTER

LIST OF DRAWINGS

DRAWING 1	MONITORING WELL AND BORING LOCATIONS
DRAWING 2	GENERALIZED WATER LEVEL CONTOUR MAP - TILL MATERIAL
DRAWING 3	GENERALIZED TILL SURFACE CONTOUR MAP
DRAWING 4	FILL/TILL CROSS-SECTIONS

LIST OF APPENDIXES

APPENDIX A	BORING LOGS
APPENDIX B	MONITORING WELL INSTALLATION REPORTS
APPENDIX C	SAMPLE COLLECTION FIELD SHEETS
APPENDIX D	ENSECO ANALYTICAL REPORTS

This investigation described in this report was conducted as part of an ongoing site assessment involving former underground storage product tanks removed in October 1989 from the facility located at 3200 Main Street in Keokuk, Iowa. This investigation supplements Woodward-Clyde Consultants' (WCC's) initial Phase III Site Assessment Report dated July 17, 1991, and November 1991 Investigation Report dated February 24, 1992.

The field investigation was conducted by WCC on behalf of United Technologies Automotive Systems, Inc. (UTAS) from October 12, 1992 through November 6, 1992. Field work was performed in accordance with the procedures and protocols of the Phase III Site Assessment Work Plan dated February 22, 1991, prepared by Pollution Control Systems, Inc. and the UTAS amendments to the Work Plan dated September 20, 1991. Program modifications requested by the Iowa Department of Natural Resources (IDNR) (letter dated July 31, 1991) were also incorporated into the field investigation.

In the November 1991 Investigation Report it was postulated that solvents from the former tank area were migrating primarily through fill materials, traveling along the top of glacial till deposits and possibly also along storm sewer pipeline backfill materials. Follow-up recommendations contained in the report included the installation of 6 new monitoring wells, sampling and analysis of the 6 new wells plus four of the 16 existing wells, and the collection of soil samples from three shallow borings downgradient of the solvent product tank excavation. In a comment letter on the November 1991 report, dated August 14, 1992, the IDNR approved the recommended additional work, with the understanding that the extent of the groundwater contaminants required further delineation to the north of monitoring well MW-8 and east of monitoring well MW-1. These specific areas were not included in this investigation. However, additional delineation of the groundwater contaminants in these areas will be addressed at a later date in conjunction with the RCRA Facility Investigation (RFI) that is being conducted at the facility.

Five underground solvent product storage tanks were removed from the fill area behind the main building of the Facility in October 1989 (Drawing 1). The facility history, tank history, and field investigation results since that time have previously been reported to the Iowa Department of Natural Resources (IDNR) in the following documents:

- Sheller-Globe Corporation, Keokuk Plant, Site Assessment Work Plan, May 3, 1990, prepared by United Technologies Automotive;
- Site Assessment Investigation, Sheller-Globe, 3200 Main Street, Keokuk, Iowa, August 9, 1990, prepared for United Technologies Automotive by Pollution Control Systems, Inc.;
- Phase II Site Assessment Subsurface Investigation, Sheller-Globe Facility, 3200 Main Street, Keokuk, Iowa, January 3, 1991, prepared for Sheller-Globe Corporation by Pollution Control Systems, Inc.;
- Phase III Site Assessment Report, Former Sheller-Globe Facility, 3200
 Main Street, Keokuk, Iowa, July 17, 1991, prepared for Sheller-Globe
 Corporation by Woodward-Clyde Consultants; and
- November 1991 Investigation of Former Underground Solvent Product Tanks, Facility at 3200 Main Street, Keokuk, Iowa, February 24, 1992, prepared for United Technologies Automotive Systems, Inc. by Woodward-Clyde Consultants.

The reader is referred to those documents for details of the site history. In general, the five underground product storage tanks removed were:

- A 6,000-gallon toluene tank;
- A 300-gallon hexane tank;
- Two 1,500-gallon methyl ethyl ketone tanks; and

• A 4,000-gallon "Foam Head Cleaning Solvent" tank (mixture of methylene chloride; trichloroethylene; 1,1,1-trichloroethane; butanol; ethanol).

Since the tanks were removed in 1989, previous field investigations have included the performance of a soil gas survey, field screening and sampling of shallow soil borings, installation of groundwater monitoring wells in both the shallow fill material and in native glacial till soils, the performance of hydraulic tests on selected wells, and the sampling of monitoring wells.

The natural topography of the site was altered significantly during the site's development by placement of structural fill material which varies from 10 to 14 feet thick in the area of the former tanks' excavation to 0.5 to 11 feet in the vicinity of the Employee Parking Lot. The majority of the investigation area is occupied by facility structures or is paved with gravel, asphalt, or concrete. Site topography generally slopes from east to west.

The vadose zone of the site collectively consists of small patches of topsoil, a narrow band of alluvial sediments in the Employee Parking Lot area, and relatively thick sequence of glacial till deposits.

The structural fill appears to have been placed directly upon glacial till deposits in the vicinity of the former tanks' excavation without any grading. The fill material and the top portion of the glacial till deposits near the former excavation have volatile organic compounds (solvents) present at elevated levels. The current investigation further characterized details of geology and hydrogeology relevant to fate and transport of contaminants at the site. After completion of the October-November 1992 field investigation, the on-site groundwater monitoring well network now consists of 7 shallow monitoring wells screened in the structural fill material and 15 monitoring wells screened in the glacial till deposits.

INVESTIGATION ACTIVITIES AND METHODS

3.1 FIELD INVESTIGATION

Field work for this investigation was performed between October 12 and November 6, 1992.

Hannibal Testing Laboratories, Inc. (HTL) of Hannibal, Missouri provided drilling and monitoring well installation services for this investigation. All drilling and monitoring well installation activities were performed under the direction of WCC personnel. Groundwater and drill cutting samples were analyzed by Enseco-Rocky Mountain Analytical Laboratories (ENSECO) in Arvada, Colorado.

In accordance with the Occupational Safety and Health Administration (OSHA) requirements of 29 CFR 1910, a site-specific Health and Safety Plan was prepared by WCC (April 1992) and implemented during all phases of the field investigation.

3.1.1 Soil Sampling

In the November 1992 report recommended the collection of soil samples from three shallow borings downgradient of the solvent product tank excavation. The three shallow borings were chosen to evaluate whether solvents were migrating preferentially in backfill materials along stormwater sewer pipelines located in the Employee Parking Lot (Drawing 1).

The shallow soil borings were drilled with a 2-inch diameter stainless-steel hand auger and field screened with an HNu for volatile organic vapors.

The boring logs for the soil borings are presented in Appendix A. Boring WCS-10 was placed behind a retaining wall, located south of the former tanks' excavation. The area behind the retaining wall was reportedly backfilled with sand. It was suspected that this sand might provide a migration pathway from the former tank excavation to the Employee Parking Lot area and to the backfill along the storm sewer lines in particular. At the location of WCS-10 an obstruction was encountered at a depth of 1.9 feet from the ground

surface (possibly a large rock, or concrete slab). Additional borings (WCS-10A and WCS-10B) were drilled on the slope behind the retaining wall, but they could not be advanced any deeper than 3.4 feet because of similar obstructions encountered. Soil encountered at each of the shallow boring locations consisted of sandy clays. No elevated HNu readings or visible contamination was observed in any of the borings, and therefore, no soil samples were collected from the shallow borings. Soil cuttings from the auger holes were returned to the respective holes.

The shallow depth of the borings prevented confirmation of sand backfill behind the retaining wall. Borings WCS-11 and WCS-12 (Drawing 1) were placed adjacent to two primary storm sewer lines crossing the Employee Parking Lot area and advanced to depths of 5.0 and 4.8 feet below the ground surface, respectively. No sand or other apparent coarse-grained backfill material was encountered in either boring. In addition, no elevated HNu readings or visible contamination were observed, and therefore no soil samples were collected from the shallow borings. Soil cuttings from the auger holes were returned to the respective holes.

3.1.2 Monitoring Well Installation

The locations of the new monitoring wells (MW-13A, MW-13B, MW-16, MW-17A, MW-17B, and MW-18) were chosen to further delineate the lateral extent of groundwater contamination downgradient from the source area and to confirm suspected preferential migration routes of contaminants through the fill materials and along the top of the glacial till sequence. Well locations are shown on Drawing 1.

Monitoring well MW-13A was installed adjacent to existing well MW-13 and was screened in the fill material to provide data on contaminants in the fill. Monitoring well MW-13B was placed immediately to the southeast of MW-13 and was screened in the glacial till approximately 20 feet deeper than MW-13. Wells MW-13A, MW-13, and MW-13B provide a cluster that monitors the fill material, shallow till, and deeper till, respectively.

Monitoring wells MW-16 and MW-18 were installed downgradient of existing wells MW-13 and MW-11 on the southwest side of a stormwater sewer pipeline that runs across the middle of the Employee Parking Lot. Both wells were screened in the shallow glacial till

materials. The purpose of these well installations was to help delineate the lateral extent of contamination and evaluate the influence of the 36-inch storm sewer line on groundwater flow.

Monitoring wells MW-17A and MW-17B were installed adjacent to the southeast corner of the Cooling Pond. Well MW-17A was screened in the fill and well MW-17B in the deep glacial till. The main purpose of the MW-17 cluster was to evaluate the lateral extent of groundwater contamination and groundwater flow conditions near the Cooling Pond.

Construction details for the new and existing monitoring wells are summarized in Table 1 and the boring logs for the new borings and wells are presented in Appendix A. All monitoring well borings were drilled with a CME-75 drill rig using 4 1/4-inch I.D. (7 7/8-inch O.D.) hollow-stem augers, 2-inch diameter split-spoon samplers and an automatic 140-pound hammer.

All of the borings, except MW-13A, were sampled at 2.5-foot vertical intervals. Boring MW-13A was sampled continuously to a depth of 10 feet in order to identify the contact layer between the fill and glacial till sequences. Soil (unconsolidated deposits) from all of the borings was visually classified and logged by the WCC geologist.

The six new wells were constructed of 2-inch diameter, flush-coupled, Schedule 40 PVC pipe with 5-foot (in fill) or 10-foot (in till) sections of 0.01-inch commercially slotted, flush-coupled Schedule 40 PVC screen. All the wells were constructed in general accordance with the work plan. Well installation reports are provided in Appendix B. Following installation, the new monitoring wells were developed to increase yield and to remove materials which may have been introduced during drilling operations. A minimum of 5 to 15 well volumes, depending on the yield of each well, was evacuated from each of the new monitoring wells. Water quality parameters including temperature, pH, salinity, and conductivity were measured during development.

Drill cuttings associated with the installation of the six new monitoring wells were also screened in the field using an HNu. No elevated HNu readings were observed, however, one composite sample and one grab sample was collected from the cuttings and submitted for laboratory analysis to determine a method disposal for the cuttings.

3.1.3 Groundwater Sampling

Groundwater sampling was conducted generally in accordance with the procedures and protocols specified in the Phase III PCS Work Plan and the UTAS amendment letter. Groundwater samples were collected using disposable polyethylene bailers from the 6 new monitoring wells and 4 existing wells (MW-10, MW-11, MW-13, and MW-14) on November 2, 1992. Seven of the 10 wells were purged on November 1, 1992 with the remaining 3 wells (MW-13 cluster) purged on the morning of November 2, 1992.

Samples collected from each well were placed in a cooler with ice and handled following proper chain-of-custody protocol.

Water quality parameters measured in the field included temperature, salinity, conductivity, and pH.

Copies of the field sample collection sheets are provided in Appendix C.

Quality assurance samples, including a trip blank and one blind duplicate sample from monitoring well MW-10 (labeled MW-19), were collected and submitted to the laboratory.

Groundwater samples were analyzed for volatile organic compounds by USEPA SW-846 Method 8240. The analytes included the Target Compound List (TCL) volatiles, plus methyl isobutyl ketone (4-Methyl-2-Pentanone), n-hexane, and butanol.

3.1.4 Surveying

The locations of all newly installed monitoring wells were surveyed by WCC personnel. Ground surface elevations and top of casing elevations were measured relative to existing well MW-13. Horizontal distances were measured, relative to the previously installed wells, using a tape measure.

3.1.5 Resampling of MW-13 Well Cluster

During the November 2, 1992 sampling event, an elevated concentration of methylene chloride was reported in the groundwater sample collected from well MW-13B. The reported presence of the methylene chloride in the well was suspected to be the result of contaminants brought into the well from the overlying contaminated upper glacial till during drilling activities. To verify this supposition, an additional round of groundwater samples was collected from the MW-13 well cluster on January 27, 1993. The three monitoring wells were purged on the evening of January 26, 1993 and sampled the following morning.

Disposal polyethylene bailers were utilized for sample collection and the samples were handled using proper chain-of-custody protocol.

The groundwater samples were once again submitted to Enseco for analysis. Analytes were the same as in the previous sampling event. Water quality parameters measured in the field included temperature, salinity, conductivity, and pH (Table 4).

4.1 SITE HYDROGEOLOGY

The following characterization of the site hydrogeology is based on information from the on-site groundwater monitoring well network consisting of 7 shallow monitoring wells screened in the structural fill material and 15 monitoring wells screened in the glacial till deposits.

The area has been extensively filled. Both groundwater flow within the fill and the interaction of the groundwater in the fill with the underlying groundwater flow system are important to the evaluation of this site. The pre-fill surface is dominated by a former drainage way which extended northwesterly toward the head of the Cooling Pond near MW-17A and 17B. The pre-fill topographic low appears to have been in the area bounded on the northeast side by MW-17A, MW-17B, MW-13, MW-13A, and MW-13B, and on the southeast side by MW-18 and MW-16. The pre-fill land surface sloped downward towards this drainage from the northeast and southwest as shown on Drawing 3.

There are two topographically distinct areas of fill. One is located beneath the driveway and parking area south of the retaining wall. Wells MW-10, MW-11, MW-13, MW-13A, MW-13B, MW-14, MW-15, MW-16, MW-17A, MW-17B, and MW-18 are located in this area (see Drawing 1). The fill thickness encountered in MW-11, MW-15, and MW-14 was less than 2 feet indicating that the areas surrounding these monitoring wells has received little fill. MW-10, MW-13, MW-13A, MW-13B, MW-16, MW-17A, MW-17B, and MW-18 encountered 7 feet to 11 feet of a clay fill with little, if any, construction debris.

The other fill area is the relatively flat, elevated area north of the parking area and east of the Cooling Pond. The Chemical Storage Building, former tank location, railroad tracks, and wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6A, MW-6B, MW-7, MW-8, MW-9, and MW-12 are located in this area. This entire area has apparently been filled to depths ranging from 5.5 feet to 13 feet as evidenced by the thickness of fill encountered. The fill

consists primarily of clay with variable quantities of rock, brick, glass fragments, sand and wood. The density of the fill appeared to vary considerably. The fill overlies glacial till.

The glacial till at the facility is a clay till containing varying quantities of silt, sand, and gravel. Discontinuous sand layers are common in the glacial till in this area and also occur at the site.

The clay till at the site consists of medium to high plasticity clays with trace amounts of sand and gravel including thin sand seams less than 1 inch thick. Clayey sand was encountered in MW-13, MW-13B, and MW-17B at an approximate elevation of 605 feet above mean sea level (msl). This layer ranged from 1.5 feet to 3 feet in thickness at these locations. The upper portion of the till is generally oxidized with a yellow-brown color with gray mottling and contains fractures which are variably mineralized with calcium carbonate, or are sometimes filled with sand. Fractures were commonly encountered down to at least elevation 600 feet msl in the deeper monitoring well borings and were noted to elevation 595 msl in MW-13B.

Other changes were noted in the elevation 590 to 600 msl interval and below which likely influence groundwater flow in the area. In all of the monitoring well borings which penetrated to at least elevation 595 msl (MW-9, MW-10, MW-11, MW-13B, MW-16, MW-17B, and MW-18), the density of the till increased significantly and rather abruptly between elevations 591 msl and 598 msl. Fractures appear to be scarce below the top of the dense till. All of the monitoring wells in the parking lot area (MW-10, MW-13, MW-13B, MW-14, MW-16, and MW-17B) which penetrated to at least elevation 595, encountered a dense to very dense silty or clayey sand immediately overlying the dense clay till. The sand ranged from less than 1 foot to 4 feet in thickness. Only one boring (MW-7) in the fill area containing the Chemical Storage Building encountered this sand. It is not clear whether this is a continuous sand layer or several discontinuous layers occurring at approximately the same elevation. The base of this sand unit marks the boundary between the oxidized and fractured till and the less permeable lower till.

Monitoring wells screened in the fill material or at the fill-glacial till interface include MW-1, MW-2, MW-3, MW-4, MW-6A, MW-13A, and MW-17A. In addition, a group of wells (OP-1, OP-2, and OP-3) installed by Environmental Science and Engineering, Inc.

(ESE) in an area adjacent to two water storage reservoirs (Drawing 1) are also screened in this interval.

The remainder of the monitoring wells except MW-13B are screened partially or totally in the oxidized and fractured glacial till. MW-13B is screened in the hard, unoxidized till. A very dense clayey, silty sand was encountered at a depth of approximately 48 to 50 feet below ground surface in MW-13B. The water level measured in MW-13B on November 4, 1992, two days after purging and sampling, was approximately 6 feet below the stabilized level measured on January 26, 1993. The slow stabilization indicates that the clayey sand likely has a low permeability, possibly due to its density and fines content.

Groundwater flow in the fill near the Chemical Storage Building appears to be essentially horizontal and generally toward the southwest. However, the actual flow direction is likely to be somewhat radial in response to the lower topography to the south and west of this fill area. The horizontal gradient appears to steepen near the retaining wall and the fill slope. The water levels in the monitoring wells screened in the fill are higher than the water levels in the till wells in this area. This head differential in this area indicates the fill is more permeable than the underlying glacial till and is contributing recharge to the underlying glacial till flow system.

The groundwater flow direction in the glacial till is generally to the southwest. The potentiometric surface shown on Drawing 2 roughly parallels the till surface contours of the northeastern slope of the previously described apparent pre-fill drainage way. The data indicate that the gradient flattens considerably southwest of the pre-fill drainage way. However, it is possible that the groundwater in the glacial till actually discharges upward into the fill and flows generally northwest toward the Cooling Pond. Even though the water level in MW-14 is lower than the measured water level in MW-16, other evidence suggests discharge may be occurring in this area. This evidence includes:

• The water levels in all of the glacial till monitoring wells in the parking area, which encountered more than 2 feet of fill, have water levels above the elevation of the top of the till (MW-10, MW-13, MW-13B, MW-16, MW-17B, and MW-18);

- An upward gradient exists at the MW-13A/13B and MW-17A/17B clusters; and
- The apparent flattening of the hydraulic gradient southwest of the prefill drainage way.

Both the soil boring and hydrologic data indicate that the fill is likely to be more permeable than the underlying glacial till. Some portion of the groundwater in the fill beneath the Chemical Storage Building area recharges the underlying upper portion of the shallow glacial till then flows southwesterly. At least a portion of the flow in the glacial till then discharges to the fill in the area of the former drainage way. The discharge to the fill in this area might also be influenced to an unknown extent by the drainage pipes buried in the fill beneath the parking area. The exact locations, depths, and construction details of the buried pipes are not known with certainty. The surface elevation and depth of the Cooling Pond also likely has an influence on the flow pattern.

4.2 GROUNDWATER SAMPLING RESULTS

Groundwater samples were collected from the six newly installed wells and from four existing wells: MW-10, MW-11, MW-13, MW-14. All samples were analyzed for volatile organic compounds using SW-846 Analytical Method 8240. The results of the groundwater analyses are summarized in Table 2. Physical properties of the contaminants are summarized on Table 3. This section presents a summary of the general distribution patterns of the solvents.

The following volatile organic compounds were detected in groundwater samples collected during the November 1992 sampling event. Out of 10 wells:

- Methylene Chloride was detected in 3 wells at concentrations ranging from 1,900 to 91,000 µg/L;
- Trichloroethene was detected in 2 wells at concentrations ranging from 1,400 to 6,000 μg/L;
- Xylenes were detected in 2 wells at concentrations ranging from 2,900 to 8,600 µg/L;

- 1,2-Dichloroethene was detected in 2 wells at concentrations ranging from 5.8 to 6.0 μg/L; and
- 1,1-Dichloroethane; Ethylbenzene; Tetrachloroethene, Toluene, and 1,1,1-Trichloroethane were each detected in 1 well at varying concentrations.

The results of this sampling event are similar in many respects to those obtained in the November 1991 sampling event; i.e., methylene chloride, xylenes, and toluene were detected at elevated concentrations.

Wells MW-10 and MW-13 still exhibit concentrations of volatile organic compounds (VOCs) significantly higher than those in other wells sampled. Total VOC concentrations are almost 10 times higher in MW-13 (135,600 μ g/L) than in MW-10 (15,000 μ g/L, 11,400 μ g/L in a duplicate sample).

None of the contaminants were detected in monitoring wells MW-14, MW-16, MW-17B, and MW-18, which are located downgradient and sidegradient of MW-10 and the MW-13 cluster. All of the wells are screened at the same stratigraphic level within the glacial till. This indicates that the lateral extent of contamination originating in the former tanks' area may have migrated only as far as the MW-13 cluster or a short distance beyond.

High concentrations of VOCs in wells MW-10 and MW-13, which are both screened within the glacial till, may be due to the preferential downslope migration of contaminants from the former tanks' excavation area. Lateral migration along the fill-till interface is also likely. In addition, the storm sewer pipes in the area, and backfill around them, may have also serve to alter migration pathways of the contaminants.

It is also apparent from the observed water levels that groundwater flow in the area of wells MW-14, MW-16, and MW-18 may be directed toward the northwest. As discussed in Section 4.1, there is evidence that discharge of the glacial till groundwater may be occurring in the pre-fill topographic low. This water then flows northwesterly toward the Cooling Pond, through the fill and/or the buried pipe backfill. Considering the potentially large areas of discharge from the till and the localized area of contaminated groundwater, considerable dilution of the contaminated water may occur in this area.

Total VOC concentrations in the other wells sampled are as follows: MW-11 - 6.0 μ g/L; MW-13A - 10,900 μ g/L; MW-17A - 12.8 μ g/L; and MW-13B - 1,900 μ g/L. The only contaminant detected in monitoring well MW-13B was methylene chloride. It was strongly suspected that methylene chloride was brought into the well, from the overlying contaminated layers, during drilling activities.

Monitoring well MW-13, which screens the upper portion of the glacial till, contained methylene chloride at a concentration of 63,000 µg/L. This zone is separated from the deeper water-bearing layers, which are screened by MW-13B, by a sequence of very hard and practically dry glacial till deposits that are considered an aquitard.

The MW-13 cluster (MW-13, MW-13A, and MW-13B) of monitoring wells was resampled on January 27, 1993. A comparison of analytical results for the two sampling events is presented in Table 4.

As a result of the resampling, methylene chloride was detected in monitoring well MW-13B at a concentration of only 5.9 μ g/L. Taking into account the presence of methylene chloride in laboratory blanks and in the trip blank, this compound is probably a laboratory artifact and should be excluded as a chemical of concern in the deep glacial till.

The main findings of the field investigation are described below:

- Groundwater flow is generally to the southwest. In addition, upward vertical gradients in the till were recorded in the MW-13 and MW-17 well clusters. These upward gradients should help to minimize both downward and off-site migration of contaminants in the till.
- Analytical results of groundwater obtained from the newly installed monitoring wells did not reveal any evidence of contaminant migration to the facility's southern property line. In addition, no contaminants were found in downgradient wells MW-14, MW-16, and MW-18. The low area of the parking lot between the MW-13 well cluster and wells MW-16 and MW-18 appears to be the likely downgradient boundary of the solvent plume.
- In comparison with analytical results obtained from the July 1992 and November 1991 sampling events, total VOC concentrations in monitoring wells MW-10 and MW-11 have decreased slightly.
- Based on analytical results obtained from monitoring well MW-17A, there are low levels of contaminants potentially migrating to the cooling pond.
- Shallow soil borings behind the retaining wall and adjacent to the storm sewer lines did not reveal any information in reference to deeper backfill materials. Field screening with an HNu did not indicate any elevated VOC readings. Fill material in the shallow boreholes looked similar to structural fill encountered at other locations on-site. It is believed that the shallow soil borings may not have been placed close enough to the primary storm sewer lines. At the present time, information concerning the exact locations of storm sewer lines is incomplete.

6.0 RECOMMENDATIONS

No new monitoring wells are proposed at this stage of the investigation. The existing well network has sufficiently characterized the extent of contamination. Operation of the proposed soil vapor extraction (SVE) system should be initiated to remove the VOC contaminants in the soils which in turn should help improve groundwater quality. The ongoing monitoring program should be continued and include semiannual water level measurements, water sampling, and chemical analysis. This sampling program should continue during and for a limited period after operation of the SVE system to measure the success of the remediation system.

Storm sewer lines connected to the Cooling Pond should be sampled (water and sediment) and analyzed for the Target List Compounds, but only after the exact locations of the storm sewer pipes and their interconnections are known. This work is already planned in conjunction with the separate and ongoing RCRA Facility Investigation being conducted at the facility.

Finally, remediation of contaminated groundwater using pump and treat technology is not expected to be productive and is not recommended for the following reasons:

- The highest levels of contaminants are still in the shallow fill material. Any remedial efforts should initially focus on the removal of the contaminant source area (soils);
- Implementation of a pump and treat system at this time might actually draw contaminants from the original source area soils down deeper into the underlying tills as the water table is depressed; and
- Due to the low permeability of the glacial tills and localized extent of contamination, it is doubtful that contaminants associated with the source area will migrate very far during soil vapor extraction of the source.

TABLE 1
SUMMARY OF MONITORING WELL CONSTRUCTION DETAILS AND WATER LEVELS

Well I.D.	Date Installed	Elevation of Top of PVC Casing ¹ (feet)	Elevation of Ground Surface (feet)	PVC Casing Diameter (inches)	Total Depth ² (feet)	Screened Interval Elevation (feet)	Depth of Groundwater ³ (feet)	Groundwater Elevation (feet)
MW-1	October 1989	640.94	NA	4	14.21	625.94 - 635.94	5.35/5.22	635.59/635.72
MW-2	October 1989	640.34	NA	4	12.75	627.24 - 637.24	8.00/7.77	632.34/632.57
MW-3	October 1989	639.02	NA	4	16.77	622.32 - 632.32	11.28/11.37	627.74/627.65
MW-4	October 1989	640.94	NA	4	11.92	625.94 - 635.94	3.93/5.10	637.01/635.84
MW-5	November 1990	640.74	640.98	4	30.00	610.71 - 620.71	7.97/NA	632.77/NA
MW-6A	November 1990	641.13	641.43	2	13.94	627.26 - 637.26	6.58/5.35	634.42/634.78
MW-6B	November 1990	641.00	641.35	2	31.75	609.27 - 619.27	7.75/NA	633.38/NA
MW-7	November 1990	638.48	638.69	2	39.88	598.68 - 608.68	10.90/10.70	627.58/627.78
MW-8	November 1990	641.69	642.00	2	29.88	611.89 - 621.89	7.95/7.64	633.95/634.05
MW-9	May 1991	639.02	639.20	2	33.58	604.78 - 614.78	14.55/14.05	624.47/624.97
MW-10	May 1991	623.98	624.21	4	29.69	594.79 - 604.79	0.76/0.81	623.22/623.17
MW-11	May 1991	627.06	627.27	2	34.31	592.85 - 602.85	5.75/5.60	621.31/621.46
MW-12	May 1991	643.40	643.66	2	34.74	609.24 - 619.24	9.04/8.18	634.36/635.22
MW-13	November 1991	623.23	623.53	2	30.48	596.13 - 606.13	2.42/2.68	620.81/620.55
MW-13A	October 1992	622.90	623.43	2	10.06	613.33-618.33	2.87/2.29	620.03/620.61
MW-13B	October 1992	623.43	624.18	2	50.11	573.68-583.68	7.29/1.17	616.14/622.26
MW-14	November 1991	628.24	629.14	2	32.70	596.74 - 606.74	10.14/8.90	618.10/619.34
MW-15	November 1991	629.11	629.81	2	33.12	597.41 - 607.41	2.58/NA	626.53/NA
MW-16	October 1992	624.44	625.07	2	34.95	589.47-599.47	5.64/4.70	618.8/619.74
MW-17A	October 1992	620.29	620.67	2	10.33	610.47-615.47	3.98/3.32	616.31/616.97
MW-17B	October 1992	620.67	620.88	2	33.61	587.18-597.18	+2.524/+2.594	623.19/623.26
MW-18	October 1992	623.45	623.84	2	35.09	588.84-598.84	7.22/5.69	616.23/617.76
OP-1 ⁵	May 1992	643.07	640.57	2	18.50	622.57-632.57	9.37/8.50	633.70/634.57
OP-2 ⁵	May 1992	640.65	637.50	2	20.50	617.50-627.50	8.97/8.11	631.68/632.54
OP-3 ⁵	May 1992	643.09	640.34	2	20.50	620.34-630.34	14.25/13.41	628.84/629.68

Notes:

All elevations are in feet above mean sea level.

Total depths measured from top of PVC casing on May 30, 1991, November 5, 1991, and November 4, 1992

Depth to groundwater measured from top of PVC casing on November 4, 1992 and January 26, 1993.

Groundwater in MW-17B stands above ground surface. Riser extension and coupling used for groundwater level measurement.

Monitoring wells installed by Environmental Science and Engineering, Inc. (ESE).

NA = Data not available.

TABLE 2

SUMMARY OF ANALYTICAL RESULTS NOVEMBER 1992 GROUNDWATER SAMPLES (CONCENTRATIONS IN µg/L)

Compound/Monitoring Well	MW-10/ MW-19 ¹	MW-11	MW-13	MW-13A	MW-13B	MW-14	MW-16	MW-17A	MW-17B	MW-18
1,1-Dichloroethane	ND (1,000)/ ND (1,000)	ND (5.0)	ND (2,500)	ND (620)	ND (85)	ND (5.0)	ND (5.0)	7.0	ND (5.0)	ND (5.0)
1,2-Dichloroethene	ND (1,000)/ ND (1,000)	6.0	ND (2,500)	ND (620)	ND (85)	ND (5.0)	ND (5.0)	5.8	ND (5.0)	ND (5.0)
Ethylbenzene	ND (1,000)/ ND (1,000)	ND (5.0)	ND (2,500)	2,300 ²	ND (85)	ND (5.0)				
Methylene Chloride	12,000 D/ 10,000 D	ND (5.0)	91,000 D ²	ND (620)	1,900²	ND (5.0)				
Tetrachloroethene	ND (1,000)/ ND (1,000)	ND (5.0)	2,700 D ²	ND (620)	ND (85)	ND (5.0)				
Toluene	ND (1,000)/ ND (1,000)	ND (5.0)	33,000 D ²	ND (620)	ND (85)	ND (5.0)				
1,1,1-Trichloroethane	1,200 D/ ND (1,000)	ND (5.0)	ND (2,500)	ND (620)	ND (85)	ND (5.0)				
Trichloroethene	1,800 D/ 1,400 D	ND (5.0)	6,000 D ²	ND (620)	ND (85)	ND (5.0)				
Xylenes (total)	ND (1,000)/ ND (1,000)	ND (5.0)	2,900 D ²	8,600 ²	ND (85)	ND (5.0)				

Notes:

- ND = Not detected; a numerical value in parentheses is the detection limit.
- D = Identifies all compounds detected in the laboratory analysis after dilution of the sample due to the presence of target compounds.
- ¹ = MW-19 Designated number for duplicate sample from monitoring well MW-10.
- ² = All wells were sampled on November 2, 1992 and the MW-13 cluster resampled on January 27, 1993. Analytical results for the January resampling are included in Table 4. Non-detected compounds are not included.

TABLE 3 PHYSICAL PROPERTIES OF CONTAMINANTS DETECTED IN GROUNDWATER NOVEMBER 1992-JANUARY 1993

Compound	Specific Gravity ¹	Dynamic Viscosity, cp ²	Solubility in water, mg/L	Vapor Pressure, mm Hg	
1,1-Dichloroethane	1.18	0.38	5,500 (20) ³	182 (20) ⁴	
1,2-Dichloroethene	1.23	0.40	500 (20)	265 (20)	
Ethylbenzene	0.87	0.87 0.69 161 (25)		9.5 (25)	
Methylene Chloride	1.33	1.33 0.43 16,700 (20)		400 (24)	
Tetrachloroethene	1.62	0.89	150 (20)	20 (25)	
Toluene	0.82 0.59		535 (25)	28.4 (25)	
1,1,1-Trichloroethane	1.34	0.86	1,495 (25)	123.7 (25)	
Trichloroethene	1.46	0.57	1,110 (25)	57.8 (20)	
Xylenes	0.86 - 0.88	0.62 - 0.81	146 - 175 (25)	6.6 - 8.7 (25)	

Notes:

Specific gravity is the ratio of the compound mass to an equal volume of water.

Numbers in parentheses are temperatures, C°.

Dynamic Viscosity, a sort of internal friction, is expressed in dyne-seconds per cm², or poises. 0.01 poise = 1 centipoise (cp). Water has a dynamic viscosity of 1 cp at 20°C.

TABLE 3 PHYSICAL PROPERTIES OF CONTAMINANTS DETECTED IN GROUNDWATER NOVEMBER 1992-JANUARY 1993

Compound	Specific Gravity ¹	Dynamic Viscosity, cp ²	Solubility in water, mg/L	Vapor Pressure, mm Hg
1,1-Dichloroethane	1.18	0.38	5,500 (20) ³	182 (20) ⁴
1,2-Dichloroethene	1.23	0.40	500 (20)	265 (20)
Ethylbenzene	0.87	0.69	161 (25)	9.5 (25)
Methylene Chloride	1.33	0.43	16,700 (20)	400 (24)
Tetrachloroethene	1.62	0.89	150 (20)	20 (25)
Toluene	0.82	0.59	535 (25)	28.4 (25)
1,1,1-Trichloroethane	1.34	0.86	1,495 (25)	123.7 (25)
Trichloroethene	1.46	0.57	1,110 (25)	57.8 (20)
Xylenes	0.86 - 0.88	0.62 - 0.81	146 - 175 (25)	6.6 - 8.7 (25)

Notes:

Specific gravity is the ratio of the compound mass to an equal volume of water.

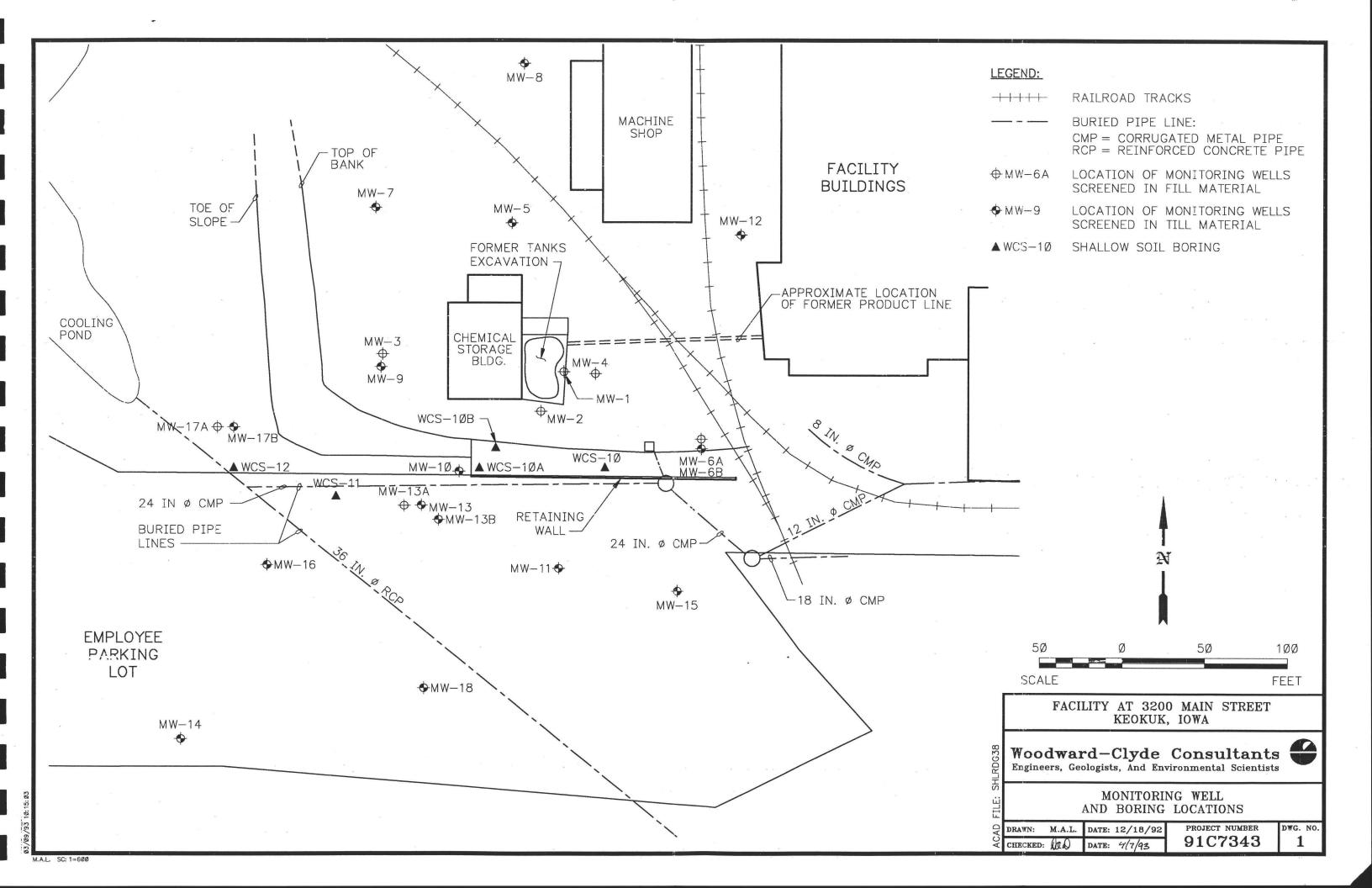
Dynamic Viscosity, a sort of internal friction, is expressed in dyne-seconds per cm², or poises. 0.01 poise = 1 centipoise (cp). Water has a dynamic viscosity of 1 cp at 20°C.

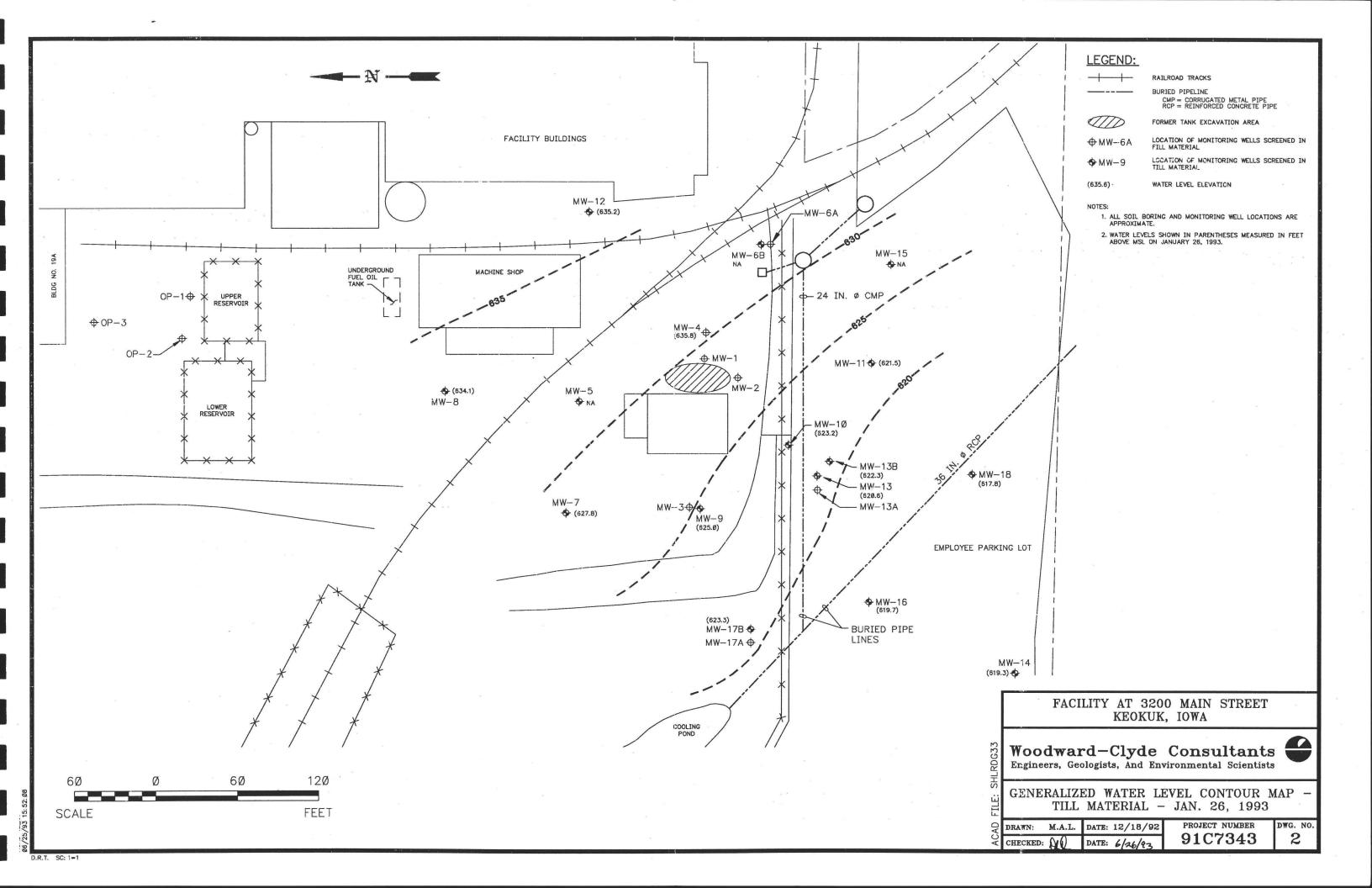
Numbers in parentheses are temperatures, C°.

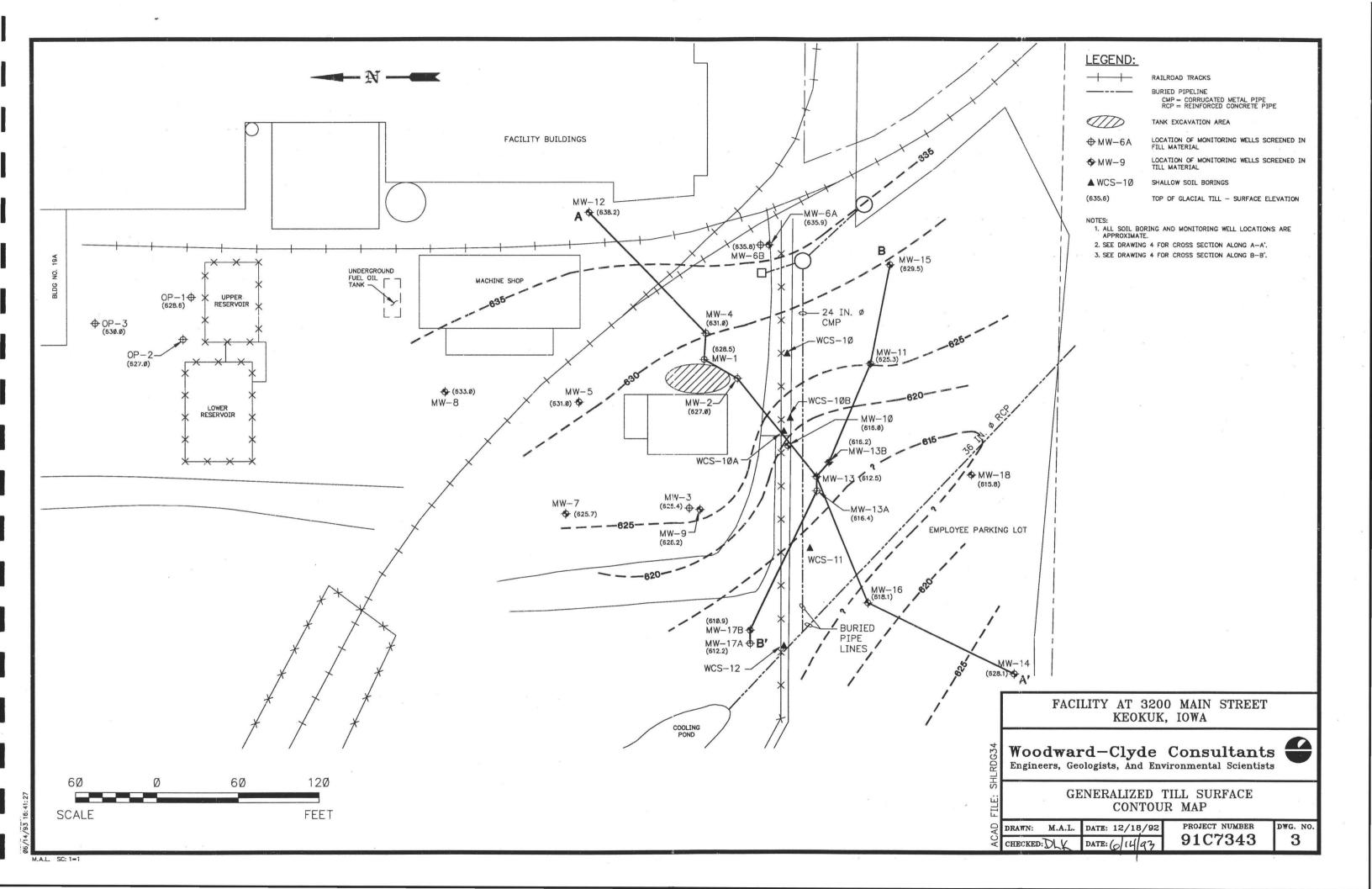
TABLE 4

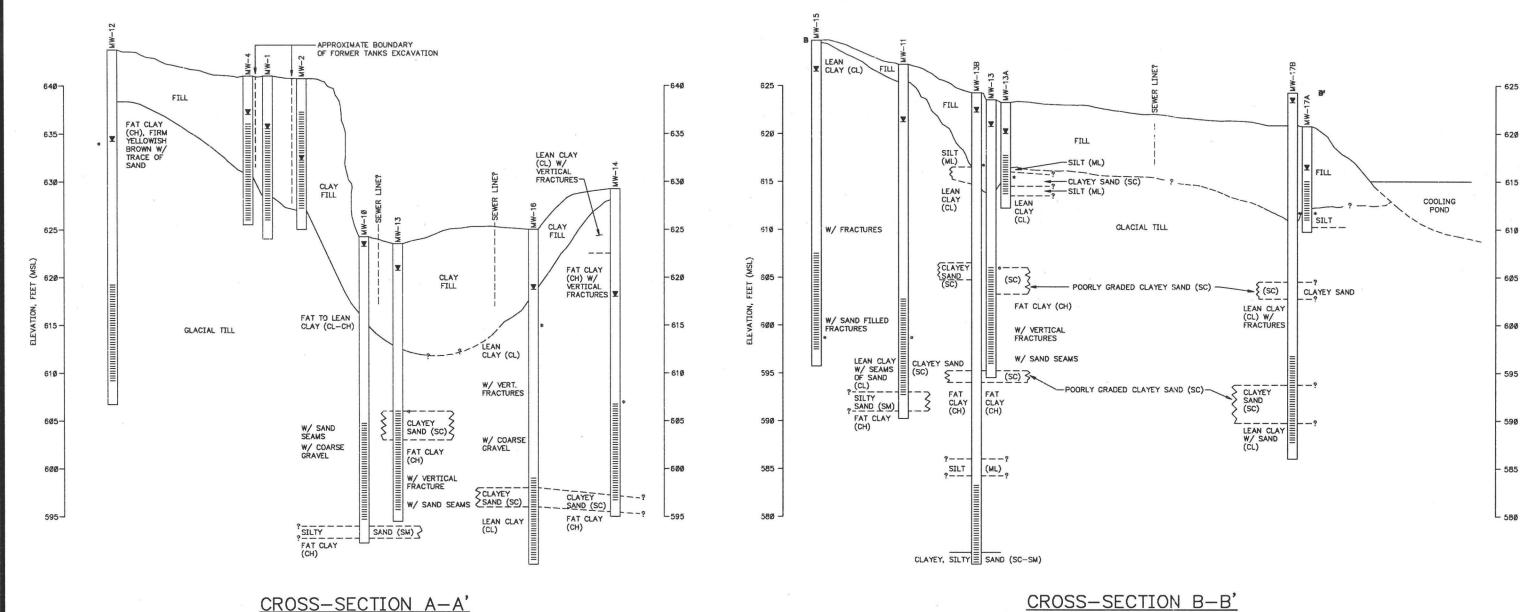
COMPARISON OF ANALYTICAL RESULTS DURING TWO SAMPLING EVENTS FOR MONITORING WELL MW-13 CLUSTER

Monitoring Wells	MV	V-13	MW	-13A	MW-13B	
Compounds, Parameters	11-02-92	01-27-93	11-62-92	01-27-93	11-02-92	01-27-93
Ethylbenzene	ND (2,500)	ND (5,000)	2,300	2,800	ND (85)	ND (5.0)
Methylene Chloride	91,000 D	63,000	ND (620)	ND (250)	1,900	5.9
Tetrachloroethene	2,700 D	ND (2,500)	ND (620)	ND (250)	ND (85)	ND (5.0)
Toluene	33,000 D	19,000	ND (620)	ND (250)	ND (85)	ND (5.0)
Trichloroethene	6,000 D	4,300	ND (620)	ND (250)	ND (85)	7.6
Xylenes (total)	2,900 D	3,000	8,600	9,800	ND (85)	ND (5.0)
Temperature, C°	15.0	7	15.2	7	12.9	12.0
pH	5.9	6.6	5.5	6.4	5.9	6.6
Salinity, %	0.5	2.0	0.25	3.0	0	1.5
Conductivity, µmhos/cm	1,150	1,300	1,150	2,350	830	1,150

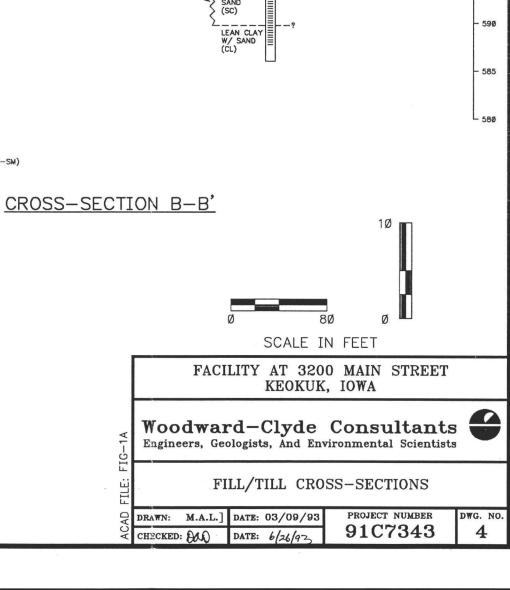

Notes:


ND = Not detected; a numerical value in parentheses is the detection limit.


D = Identifies all compounds detected in the laboratory analysis after dilution of the sample due to the presence of target compounds. All concentrations are expressed in $\mu g/L$ (ppb).


Non-detected compounds are not included.

Methylene chloride was detected in the January 1993 laboratory method blanks and trip blank at estimated concentrations of 1.2 μ g/L to 5.1 μ g/L.



LEGEND:

- * DEPTH AT WHICH WATER WAS ENCOUNTERED DURING DRILLING
- ▼ STATIC WATER LEVEL WITHIN WELLS AS MEASURED ON NOVEMBER 4, 1992 (WATER LEVEL WITHIN MW-13B WAS MEASURED ON JANUARY 26, 1993)

NOTES:

- 1. REFER TO DRAWING 3 FOR CROSS-SECTION LOCATIONS
- 2. GEOLOGIC CONDITIONS SHOWN AWAY FROM MONITORING WELLS ARE INTERPRETIVE.

	BORING LOG									
PROJECT	of									
					Keokuk, Jowa			CT NO. 91C7343		
LOGGED	BY			G. Par	inako DRILLED BY D. Kocour 632.9 ELEVATION DATUM NGVD			NO0220		
OBSERV					632.9 ELEVATION DATUM NGVD			10/14/92 Hand auger		
GROUND) W	ATE	R	No wat	er detected ATD		KIG _	nand auger		
+ +		S	AMPL	E						
		>	띬				ELEVATION			
Ę	ш.	ER	A	KSF	DESCRIPTION	180	AT.	FIELD		
ОЕРТН,	TYPE	ŏ	S			SYMBOL	E	NOTES		
		RECOVERY	RESISTANCE	P.,		0,	ᆸ			
0			2		TOPSOIL	XX		Boring advanced w/		
					TOTOOLE	\otimes		2-inch-dia stainless		
					LEAN CLAY WITH SAND (CL), firm, dark			steel hand auger		
					brown, with trace of coarse gravel, with trace					
					to little fine grained sand, with abundant roots					
					and root hairs (Fill)					
								HNU=BG		
					Becoming light brown with light gray mottling,			тичо-во		
					with iron oxides (?) staining, with coarse		_	WC > PL		
					gravel, with root hairs					
					ž.					
					Becoming soft to firm. light brown, with light					
					gray mottling			Refusal: boulder		
					8-17			encountered @		
								depth of 1.9 ft.		
					-	-		B.O.B. 1.9 ft.		
								Boring backfilled		
								w/ auger cuttings		
								dagor varings		
								~		
							- 630 -			
_					-	1				
							_			
-					-	4				
					*					
							-			
5				A _W	oodward-Clyde Consultants			Figure No. A-		

					BORING LOG			WCS-10A
PROJEC	T N	AME			Sheller-Globe (3200 Main Street)		SHEET	of
PROJEC	TLO	CA1	TION		Keokuk, Iowa			T NO. 91C7343
LOGGE	D BY			G.Pap	inako DRILLED BY D. Kocour			io0220
SURFA	CE E	LEV	ATION	L	629.8 ELEVATION DATUM NGVD			10/18/92
OBSER	VATI	ONS					RIG _	Hand auger
GROUN	ND W	ATE	R	No wat	er detected ATD			
‡		S	AMPL	E			_	
		>	띵				ELEVATION	
ОЕРТН,	ш	ER	A	KSF	DESCRIPTION	SYMBOL	E	FIELD
٩	TYPE	8	ST		DESCRIPTION	Ξ	Š	NOTES
ä	-	RECOVERY	RESISTANCE	PP,		S		
0-		LE.	8					
0					TOPSOIL	\boxtimes		Boring advanced w/
					<u> </u>	X		2-inch-dia stainless
					FAT CLAY WITH SAND (CH), firm, light			steel hand auger
					brown with dark brown mottling, with trace			
					fine grained sand, with iron oxides nodules,			
					_ with roots, root hairs (Fill)	4		
					VOID			HNU=BG
							- 1	IIIVO – BO
								*
					[:			
					LEAN CLAY WITH SAND (CL), firm, light			HNU = BG
					grayish brown, with little fine grained sand,	//		
					with little gravel, with pieces of slag and coal			
					(Fill)			
					[- 1	Refusal: @ 2.2 ft.
								(Concrete slab?)
					7			(Control Sino I)
						4		
								B.O.B. 2.2 ft.
					,			Boring backfilled
								w/ auger cuttings
								W augus varings
						-	. 4	
-	1				-			
					4			
						+		
-	1				†			
					*			
					±		625 -	
5-								
	1			W	oodward-Clyde Consultants	1		Figure No. A-

	BORING LOG			WCS-10B
PROJECT LOCATION LOGGED BYG	Sheller-Globe (3200 Main Street) Keokuk, Iowa Papinako DRILLED BY D. Kocour 633.3 ELEVATION DATUM NGVD		PROJECT TASK I	of 1 of 1 OT NO. 91C7343 NO. 0220 10/18/92
OBSERVATIONS				Hand auger
TYPE RECOVERY RESISTANCE	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
	TOPSOIL	\otimes		Boring advanced w/
	LEAN CLAY WITH SAND (CL), firm, gray and yellowish brown, with trace to little of fine grained sand, with root hairs, with trace of slag (small fragments) (Fill)			2-inch-dia stainless steel hand auger HNU=BG
	 Becoming light yellowish brown with little fine gravel 			WWW PG
-	_ Becoming soft to firm	-		HNU=BG
	With small lumps of gray clay With roots, bark, pieces of wood			HNU=BG
			- 630 -	Refusal: @ 3.4 ft.
				B.O.B. 3.4 ft.
				Boring backfilled w/ auger cuttings
			_	
5	Woodward-Clyde Consultants			Figure No. A-

	BORING LOG							WCS-11		
PROJECT NAME Sheller-Globe (3200 Main Street)								of		
PROJEC	TLO	CAT	ION .	G Par	Keokuk, Iowa	_		CT NO. <u>91C7343</u> NO. <u>0220</u>		
	LOGGED BY G. Papinako DRILLED BY D. KOCOUT TASK NO SURFACE ELEVATION 622.3 ELEVATION DATUM NGVD DATE									
OBSERV	VATI	ONS						Hand auger		
GROUN	D W	ATE	R	No wat	ter detected ATD					
++		S	AMPL	E			_	,		
		<u>≻</u>	핑	LL.		_	ELEVATION			
ОЕРТН,	TYPE	RECOVERY	RESISTANCE	KSF	DESCRIPTION	SYMBOL	/AT	FIELD NOTES		
当	₹	2	SIS	PP,		SY	LE	NUTES		
		22	Æ	<u>a</u>			Ш			
0 -					CONCRETE			Boring advanced w/		
						-		2-inch-dia stainless		
								steel hand auger		
					POORLY GRADED GRAVEL WITH SAND AND CLAY (GP), dense, light gray,			HNU=BG		
					coarse with little fine grained sand, with trace			HNU=BG		
_					of clay (Fill)	-				
				*	Quantity of clay increasing	-				
					Camara, or only moreonage					
								IDIII DO		
					LEAN CLAY WITH SAND (CL), firm, olive			HNU=BG		
					brown with red, dark brown, white mottling,					
					with trace of fine grained sand, with pieces of					
-					wood, with fragments of paint (?) (Fill)	1//		9		
					With trace of mica		- 620 -			
					Becoming light brown with bluish gray mottling, with iron oxides (?) nodules					
					motting, with from oxides (:) hoddles					
					With fragments of lime (?)					
					With seams and partings of dark brown clay			HNU=BG		
							1			
					Becoming dark brownish gray					
					Quantity of sand increasing					
					Committy of ourse invitations					
-					- P	-//				
					Becoming moist with bright olive mottling, with trace of coarse gravel					
					with those of course graver		_			
								B.O.B. 5.0 ft.		
								Boring backfilled		
-								w/ auger cuttings		
3 -	Woodward Clyde Congultants									
				VV	oodward-Clyde Consultants			Figure No. A-		

					BORING LOG			WCS-12
					Sheller-Globe (3200 Main Street)			
					Keokuk, Iowa			T NO91C7343
LOGGE	D BY			G. Par	DINAKO DRILLED BY D. KOCOUR 620.9 ELEVATION DATUM NGVD			io. <u>0220</u>
OBSER					620.9 ELEVATION DATUM NGVD			10/14/92 Hand auger
GROUN	ID W	ATE	R	No wat	er detected ATD		KIO	Traile auger
		W-1100	AMPL					, , , , , , , , , , , , , , , , , , ,
÷	_						z	
Ť		R	RESISTANCE	KSF		占	ELEVATION	FIELD
оертн,	TYPE	RECOVERY	STA		DESCRIPTION	SYMBOL	N.	NOTES
님	F	ECC	SIS	PP,		S	빌	
_		2	R				ш	
0 -					ASPHALT			Boring advanced w/
								2-inch-dia stainless
								steel hand auger
					POORLY GRADED GRAVEL WITH			
					SAND (GP), dense, coarse, gray, angular limestone gravel with little to some fine			
					grained gravel (Fill)			
						-		
					LEAN CLAY WITH SAND AND GRAVEL		- 620 -	
-					(CL), firm, light brown, with little coarse gravel, with trace fine grained sand, with	1//		HNU=BG
					pieces of rubber (Fill)			
						$ \!$		
				v.	LEAN CLAY WITH SAND (CL), firm, olive			
					gray with black mottling, with little fine and			
					coarse grained sand, with pieces of wood and rubber, with root hairs (Fill)			
					rabbel, with root halfs (1 m)			
-					Becoming light brown with olive and black	-1//		
					mottling Becoming soft to firm, moist			HNU=BG
					Becoming soft to firm, moist			HIVO = BO
					With iron oxides (?) nodules			
					Becoming firm			
-						-//		
					Quantity of sand decreasing			
					×			
						1//		
								B.O.B. 4.8 ft.
								Doming bookefill-1
					Becoming soft, light olive brown, moist, with			Boring backfilled w/ bentonite pellets
					small fragments of paint and bricks			and topped w/
								auger cuttings
							<u> </u>	
5 —								
3				AW.	oodward-Clyde Consultants			Figure No. A
				VV	oodward-Ciyde Collsultalits			Figure No. A-

	BORING LOG			MW-13A
PROJECT LOCATION LOGGED BY G. Pa SURFACE ELEVATION OBSERVATIONS	Sheller-Globe (3200 Main Street) Keokuk, Iowa pinako DRILLED BY T. Clay (HTL) 623.4 ELEVATION DATUM NGVD enters borehole at 8.3'	- PI - T	ROJECT ASK NO ATE	1 of 1 7 NO. 91C7343 D. 0220 10/18/92 CME-75
TYPE RECOVERY RESISTANCE PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
S 6 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	CONCRETE LEAN CLAY WITH SAND AND GRAVEL (CL), firm, yellow brown, olive gray and dark gray (mixed), with some to trace of coarse gravel, with trace of fine grained sand (Fill) Becoming olive gray, with pieces of rotten wood With root hairs Becoming medium gray SILT (ML), soft, medium gray, with root hairs, slightly plastic CLAYEY SAND (SC), very loose, dark gray, fine grained, poorly graded, with some clay in fines SILT (ML), very soft, dark gray with black mottling, low plastic, with some clay in fines,		520 -	Boring advanced w/ 4 1/4-inch I.D. HSA, 2-inch dia. split spoons, and 150 lbs automatic hammer HNU=0.4 HNU=0.8; BG=BZ=0.2 ppm HNU=BG (Alluvium) Water enters ATD (8.3') HNU=BG
20-	with abundant root hairs, with pieces of unoxidized wood	- 6	510 -	B.O.B. @ 11.0 ft. Boring completed as monitoring well Note: Resistance = 0 defines penetration w/out strokes of hammer

					BORING LOG			MW-13B
PROJECT LOGGET SURFACT OBSERV	T LO D BY CE EI	LEVA	TION -	G. Pap	Sheller-Globe (3200 Main Street) Keokuk, Jowa binako DRILLED BY T. Clay (HTL) 624.2 ELEVATION DATUM NGVD enters borehole at 7.3'		PROJECT TASK N DATE	1of3 CT NO91C7343 NO0220
		4.0	AMPLI			T		
O DEPTH, ft.	TYPE	RECOVERY	RESISTANCE	PP, KSF	NAME OF THE OWNER OWNER OF THE OWNER OWNE	SYMBOL	ELEVATION	FIELD NOTES
	S		2 4		CONCRETE LEAN CLAY WITH SAND AND GRAVEL (CL), firm, light brown, olive and dark gray, with little coarse gravel (limestone), with little fine grained sand, with root hairs (Fill)			Boring advanced w/ 4 1/4-inch I.D. HSA, 2-inch dia. split spoons, and 150 lbs automatic hammer (penetration
5 -	S		2 4 7		Becoming soft Becoming dark olive gray With lumps of rotten wood		- 620 - 	without strokes) HNU=0.4; BG=0.2 ppm HNU=0.3; BG=0.2 ppm
-	S		0 1 2	æ	Becoming light olive gray, moist SILT (ML), very soft, dark gray, low plastic, with abundant root hairs, with little clay in fines, with trace of coarse grained sand		- 615 -	Water enters ATD (7.3') HNU=BG
10	S		0 0 0		LEAN CLAY WITH SAND (CL), very soft, light gray with brown mottling, with trace of fine grained sand, with iron oxides (?) mottling Becoming soft, quantity of iron oxides (?)			(Alluvium) (Modified till) HNU=BG
15	S		2 3 4		increasing, with abundant root hairs		- 610 -	HNU=BG
-	S		0 2 4		With iron and manganese oxides (?) staining, with calcareous nodules, with trace of coarse gravel Becoming light yellowish-brown			HNU=BG
-	S		7 8 4		Quantity of sand increasing CLAYEY SAND (SC), medium dense, dark yellow, fine grained, poorly graded, with little to some clay as matrix		- 605 -	HNU=BG
20	S		5 7 10		LEAN CLAY WITH SAND (CL), soft to firm, yellowish-brown, with trace of coarse grained sand, with abundant closely spaced vertical fractures infilled with calcareous			HNU=BG (Till)
-	S		2 4 7		With trace of fine and coarse gravel		- 600 -	HNU=BG
25 —				W	Becoming yellowish-brown and bluish-gray oodward-Clyde Consultants	4		Figure No. A-

					BORING LOG			MW-13B
PROJECT PROJECT LOGGE SURFACE	T LO D BY CE E	2 of 3 CT NO. 91C7343 NO. 0220 10/17/92						
OBSER GROUN				Water e	enters borehole at 7.3'		RIG	CME-75
£+.		Si	AMPLI	Ε			-	
25 [—]	TYPE	RECOVERY	RESISTANCE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
23	S		2 7		LEAN CLAY WITH SAND AND GRAVEL			HNU=BG
-			11		 (CL), soft to firm, yellowish-brown and bluish-gray, with little coarse and fine grained sand, with trace of fine and coarse gravel, with 			Drilling stopped 10-16-92 Drilling resumed
-	S		9 23		vertical fractures infilled with calcareous clay, with seams, parting and thin beds (1-1.5 inch) of fine grained sand, with root hairs			10-17-92 HNU=BG
30 —			38		CLAYEY SAND (SC), very dense,		- 595 -	
-	S		7 16 18		grayish-yellow, fine grained, poorly graded, with some clay as matrix Becoming mostly medium grained and dense			HNU=BG
-					LEAN SANDY CLAY (CL), firm to hard, dark olive, bluish-gray, yellowish-brown, with			
-	S		2 18 19		disseminated sand, with seams and partings of sand, with trace of coarse gravel, with veinlets of calcite			HNU=BG
35 —	S		2 12		With layer (4 inch thick) of dense, grayish-yellow, medium grained, poorly graded, clayey sand		- 590 - 	HNU=BG
_			18		LEAN CLAY WITH SAND (CL), firm to hard, dark gray, with trace of disseminated fine grained sand, with trace of fine and coarse gravel			9
-	S		4 12 18		Becoming dark gray and yellowish-brown (irregularly distributed), with seams and partings of fine grained sand		 - 585 -	HNU=BG
40 —	S		4 14		SILT (ML), dense, dark gray, low plastic, with trace of clay, with trace of very fine grained sand, with trace of mica			HNU=BG
_			19		LEAN CLAY WITH SAND AND GRAVEL (CL), firm to hard, dark gray with olive brown zones, with little disseminated fine grained			
-	S		6 18 37		- sand, with trace of fine gravel With partings of fine grained sand, with little - silt in fines, with trace of mica		- 580 -	HNU=BG
45 —					_			
-	S		5 19 36		With layer (5 inch thick) of dark gray, fine grained, poorly graded, clayey sand			HNU=BG
-					-			
-	S		5 24 60		CLAYEY, SILTY SAND (SC-SM), very dense, dark gray, very fine to fine grained, poorly graded, with little to some clay and silt	//	 - 575 -	HNU=BG
50 —				A 117	in fines with trace of mica			
				-W	oodward-Clyde Consultants			Figure No. A-

					BORING LOG			MW-13B
PROJECT LOGGE SURFAC	CT LO D BY CE E	LEV	TION .	G. Par	Sheller-Globe (3200 Main Street) Keokuk, Iowa Dinako DRILLED BY T. Clay (HTL) 624.2 ELEVATION DATUM NGVD enters borehole at 7.3'	-	PROJECT TASK N DATE_	3 of 3 CT NO. 91C7343 NO. 0220 10/17/92 CME-75
	ID W	-			enters porenole at 7.3			
00 DEPTH, ft.	TYPE	RECOVERY	RESISTANCE 3	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
-					CLAYEY, SILTY SAND (SC-SM), very dense, dark gray, very fine to fine grained, poorly graded, with little to some clay and silt in fines, with trace of mica, with trace of disseminated carbonaceous (?) matter			
- 55 —					- -		- 570 -	B.O.B. @ 53.0 ft. Boring completed as monitoring well
-					- - -		 	Note: Resistance = 0 defines penetration w/out strokes of hammer
60 —							- 565 -	
-					- - -			
65 —							- 560 - 	
-					-			
70 —							- 555 -	
-					- - -			
- 75 —					_		- 550 -	
			4	W	oodward-Clyde Consultants	-		Figure No. A-

					BORING LOG			MW-16
PROJECT LOGGE	T LO D BY CE E	CAT	TON .	G. Par	Sheller-Globe (3200 Main Street) Keokuk, Iowa DINIALED BY T. Clay (HTL) 625.1 ELEVATION DATUM NGVD	_	PROJECT TASK N DATE	1 of 2 CT NO. 91C7343 NO. 0220 10/15/92 CME-75
GROUN	D W	ATE		Water 6	enters borehole at 10.0'		RIG _	CIVIE-75
÷		Si	AMPL	E				
O DEPTH, f	TYPE	RECOVERY	RESISTANCE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
					ASPHALT 0.25 ft.		625	Boring advanced w/
-	S		1		LEAN CLAY WITH GRAVEL (CL), firm, yellowish-brown, with some angular coarse gravel (Fill) LEAN CLAY WITH SAND (CL), soft,			4 1/4-inch I.D. HSA, 2-inch dia. split spoons, and 150 lbs automatic hammer
-			1 2		yellowish-brown, with trace of disseminated fine grained sand (Fill) With layer-2 inch of reddish-yellow, fine grained, poorly graded, clayey sand			HNU=BG
5 —	S		1 2 3		Becoming dark olive gray, with root hairs Becoming dark gray, with iron oxides (?) nodules, with pieces of unoxidized wood		- 620 - 	HNU=BG
-	S		2 2 2		LEAN CLAY WITH SAND (CL), soft, gray, with trace of fine grained sand Becoming very light gray, with iron and			(Till)
			۷.		manganese oxides (?) nodules			HNU=BG
10 -	S		2 3 3		With iron and manganese oxides nodules (?) and staining		- 615 -	Water enters ATD (10') HNU=BG
-	S		1 2 2		Becoming gray with dark brown and orange mottling and staining Quantity of sand increasing, with root hairs			HNU=BG
15 -	S		2 4 6		Becoming firm, light yellowish-brown, with trace of fine gravel, with calcareous nodules seams and partings		- 610 - 	HNU=BG
-	S		4 7 10		With extensive vertical fractures infilled with calcareous matter			HNU=BG
20 —	S		4 6 9		Quantity of fine, rounded gravel increasing		- 60 5 - 	HNU=BG
-	S		6 7 10		With trace of coarse, subangular gravel, maximum size 0.9 inch			HNU=BG
25 —				W	oodward-Clyde Consultants			Figure No. A-

PROJECT NAME Sheller-Globe (3200 Main Street) RROUTED LOCATION SHEET 2 of 2 PROJECT LOCATION GOGED BY G. Papinako DRILLED BY T. Clay (HTL) SURFACE ELEVATION 625.1 ELEVATION DATUM. NGVD OBSERVATIONS GROUND WATER. Water enters borehole at 10.0' SAMPLE The street of the stree						BORING LOG			MW-16
DESCRIPTION DESCR	PROJECT LOGGE SURFA OBSER	CT LC ED BY CE E VATI	LEV	TION .	G. Par	Keokuk, Iowa Dinako DRILLED BY T. Clay (HTL) 625.1 ELEVATION DATUM NGVD	_	PROJECT TASK I	CT NO. <u>91C7343</u> NO. <u>0220</u> 10/15/92
DESCRIPTION DESCR	-		Si	AMPI	F		T		
LEAN CLAY WITH SAND (CL), firm to hard, light yellowish-brown, with little fine grained sand, with iron oxides nodules, with seams and partings of calcareous matter CLAYEY SAND (SC), dense, reddish-brown, fine grained, porly graded, iron oxides (?) stained, with little to some clay as matrix LEAN CLAY WITH SAND AND GRAVEL (CL), hard, light gray, with trace of silt, with little fine grained sand, with little fine gravel Becoming yellowish-brown, with abundant iron oxides (?) nodules Becoming light gray, with thin beds (0.1 inch) of fine grained, gray sand Becoming dark olive gray with white mottling, with seams of fine grained sand, with vertical fractures infilled with calcareous matter B.O.B. @ 36.0 ft. Boring completed as monitoring well	ОЕРТН,		П	RESISTANCE	KSF		SYMBOL	_	
Woodward-Clyde Consultants Figure No. A-	30 — 35 — 40 — 45 —	S		7 10 15 7 12 20 7 18 24		hard, light yellowish-brown, with little fine grained sand, with iron oxides nodules, with seams and partings of calcareous matter CLAYEY SAND (SC), dense, reddish-brown, fine grained, poorly graded, iron oxides (?) stained, with little to some clay as matrix LEAN CLAY WITH SAND AND GRAVEL (CL), hard, light gray, with trace of silt, with little fine grained sand, with little fine gravel Becoming yellowish-brown, with abundant iron oxides (?) nodules Becoming light gray, with thin beds (0.1 inch) of fine grained, gray sand Becoming dark olive gray with white mottling, with seams of fine grained sand, with vertical fractures infilled with calcareous matter		- 595	Boring completed as monitoring well

	BORING LOG			MW-17A
PROJECT LOCATION G. Par SURFACE ELEVATION OBSERVATIONS	Sheller-Globe (3200 Main Street) Keokuk, Iowa pinako DRILLED BY T. Clay (HTL) 620.7 ELEVATION DATUM NGVD	_ _ _	PROJECT TASK N	of1
	enters borehole at 8.0'			
TYPE RECOVERY RESISTANCE PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
0	POORLY GRADED GRAVEL WITH CLAY (GP-GC), dense, light gray, coarse limestone gravel with little to some clay (Fill) LEAN CLAY WITH SAND (CL), firm, light yellowish-brown with gray mottling, with iron oxides (?) nodules, with little fine grained sand (Fill) Becoming soft Becoming dark olive with gray mottling Becoming firm, light yellowish-brown SILT (ML), very soft, gray, low plastic, with abundant roots and root hairs, with small nodules of black carbonaceous (?) matter		- 620	Boring advanced w/ 4 1/4-inch I.D. HSA, 2-inch dia. split spoons, and 150 lbs automatic hammer HNU: Sample 1.0 ppm BZ= 0.2 ppm HNU: Sample 2.1 ppm BZ= 0.2 ppm Water enters ATD (8.0') Sample 0.2 ppm (HNU) BZ= 0.2 (Alluvium) B.O.B. @ 11.0 ft. Boring completed as monitoring well
25 W	oodward-Clyde Consultants			Figure No. A-

					BORING LOG			MW-17B
PROJECT LOGGE	T LO	CAT	ION .	G. Par	Sheller-Globe (3200 Main Street) Keokuk, Iowa DRILLED BY T.Clay (HTL) 620.9 ELEVATION DATUM NGVD	_	PROJECT TASK I	of 2 OT NO. 91C7343 NO. 0220 10/13/92
OBSERV	VATI	ONS			enters borehole at 9.0'			CME-75
	D W		MPL		AND WASHING WE ZIV	T		
o DEPTH, ft.	TYPE	RECOVERY	RESISTANCE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
-	6		1		POORLY GRADED GRAVEL WITH CLAY (GC), dense, gray, angular, limestone gravel, with some lean, grayish-brown clay (Fill) LEAN CLAY WITH GRAVEL (CL), soft to		- 620 - 	2-inch dia. split spoon and 150 lbs
5—	S		2 2		firm, light brown, with trace of fine well rounded gravel (Fill) Becoming soft, olive brown		-	automatic hammer WC > PL
-	3		3 2		Becoming dark gray with pieces of wood		- 615 -	HNU=BZ=BG
-	S		2 2 2		Becoming firm, light brown, moist Becoming dark gray with olive mottling, with abundant root hairs			
10 —	S		2 3 3		LEAN CLAY WITH SAND (CL), soft to firm, light gray with dark brown mottling, with			Water enters ATD (9.0')
	S		1 2 2		trace of fine grained sand, with abundant iron oxides (?), with vertical sparse fractures		- 610 - 	(Till) HNU=BG
-					Becoming bluish-gray with roots and root hairs			
15 —			_		Becoming light gray		-	
-	S		2 4 5		Quantity of sand increasing CLAYEY SAND (SC), loose, grayish-brown,		- 605 -	
-	S		4 5 10		poorly graded, with some lean clay as matrix LEAN CLAY WITH SAND AND GRAVEL (CL), firm to hard, light yellowish-brown, with			
20 -	S		3 5 5		little fine grained sand, with little fine well rounded gravel, with iron oxides (?) nodules, with small lenses of carbonaceous (?) matter, with vertical fractures infilled with calcareous matter		- 600 -	
-	S		5 22 37		Becoming very hard, with seams and partings of calcareous matter Quantity of gravel decreasing			HNU=BG
25 —				w	oodward-Clyde Consultants			Figure No. A-

			BORING LOG			MW-17B
PROJECT LO LOGGED BY	CATION LEVATION ONS	G. Par	Sheller-Globe (3200 Main Street) Keokuk, Iowa Dinako DRILLED BY T.Clay (HTL) 620.9 ELEVATION DATUM NGVD Enters borehole at 9.0'	_	PROJECT TASK N DATE	2 of 2 ET NO. 91C7343 NO. 0220 10/13/92 CME-75
75 DEPTH, #+	RESISTANCE THE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
30 —	12 19 26 17 22 32		LEAN CLAY WITH SAND (CL), hard, light yellowish-brown, with dark gray mottling, with iron oxides (?) nodules, with little fine grained sand, with trace of fine gravel CLAYEY SAND WITH GRAVEL (SC), very dense, dark olive gray with white mottling, poorly graded, with lean clay in matrix and in small beds, with little fine gravel, with zones of weak calcareous cementation LEAN CLAY WITH SAND (CL), very hard, light brown with gray mottling, with seams and partings of fine grained sand Becoming dark gray		- 595 -	HNU=BG HNU=BG
35 —			With layer of dark gray, clayey, fine grained sand (0.5 feet thick)		- 585	B.O.B. @ 35.0 ft. Boring completed as monitoring well
45 —					- 580	
50		W	oodward-Clyde Consultants			Figure No. A-

					BORING LOG			MW-18
PROJECT PROJECT LOGGE SURFA	T LC	CATI	PROJECT TASK N	1 of2 CT NO91C7343 NO0220 10/15/92				
OBSER	VATI	ONS			enters borehole at 22.5'			CME-75
÷			MPLI			Π		
O DEPTH, FI	TYPE	RECOVERY	RESISTANCE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
-	S		2 2 2		ASPHALT AND POORLY GRADED GRAVEL WITH CLAY (GC) LEAN CLAY WITH SAND (CL), firm, light brown (Fill) Becoming dark olive brown with light gray mottling With trace of fine grained sand With abundant roots and root hairs With pieces of wood		620 -	Boring advanced w/ 4-inch I.D. HSA, 2-inch dia. split spoons, and 150 lbs automatic hammer HNU=BG
5 —	S		2 4 4		-			HNU Sample 1.2 ppm BZ=BG
- 10 —	S		2 4 7		LEAN CLAY WITH SAND (CL), firm, light brown with little coarse grained sand With calcareous seams and partings		- 615 -	HNU Sample 1.2 ppm BZ=BG (Till)
-	S		5 7 7		With carcareous seams and partings With vertical fractures and root channels infilled with gray calcareous matter With manganese oxides (?) mottling			HNU Sample 2.2 ppm BZ=BG
-	S		5 8 10		Quantity of sand increasing		- 610 -	HNU Sample 3.2 ppm BZ=BG
15 —	S		8 8 9	*	With manganese oxides (?) staining With zones of strong calcareous cementation			HNU Sample 1.0-1.5 ppm BZ=BG
-	S		7 8 9				- 605 -	HNU Sample 4-5 ppm BZ=BG
20 —	S		6 9 10		With extensive (1 feet long) vertical fractures infilled with clayey calcareous matter			HNU Sample 0.4 to 4.0 ppm BZ=BG
- - 25 —	S		13 11 10	V	- With trace of coarse gravel		- 600 -	Water enters ATD (22.5') Zero recovery due to coarse gravel encountered
23	ı			W	oodward-Clyde Consultants			Figure No. A-

					BORING LOG			MW-18
PROJECT LOGGE SURFACT OBSERV	T LO D BY CE E VATI	LEV.	TION .	G. Par	Sheller-Globe (3200 Main Street) Keokuk, Iowa Dinako DRILLED BY T. Clay (HTL) 623.8 ELEVATION DATUM NGVD enters borehole at 22.5'	_	PROJECT TASK N DATE	2 of 2 CT NO. 91C7343 NO. 0220 10/15/92 CME-75
	- "		AMPL			T		
. DEPTH, ft. - 52 —	TYPE	RECOVERY	RESISTANCE	PP, KSF	DESCRIPTION	SYMBOL	ELEVATION	FIELD NOTES
	S		5 12 40		LEAN CLAY WITH SAND (CL), firm grayish-brown, with large lenses of calcareous			Drilling resumed 10-16-92
_	S		5 27 32		reddish-yellow, fine grained, poorly graded, stained with iron oxides (?), with clay in matrix With layer of fat clay, soft, dark olive gray (2.5 inch thick)		- 595 -	Sample HNU=BG Sample HNU=BG
30 —	S		6 12 17		LEAN CLAY WITH SAND (CL), soft to firm, light brown to yellowish brown, with little to some coarse and fine grained sand, with iron oxides (?) staining Becoming gray with trace of coarse gravel			Sample HNU=BG
35 —	S		7 12 17		Becoming light brown, with little coarse, angular gravel. Maximum size 1.2 inch. with iron oxides (?) staining		- 590 - - 590 -	Sample HNU=BG
33								
-					-			B.O.B. @ 36.0 ft. Boring completed as monitoring well
-					-	+ $ $	- 585 -	
40 —					-			
-					-			
45 —							- 580 - - -	
-						-		
50					_		- 575 -	
			4	W	oodward-Clyde Consultants			Figure No. A-

APPENDIX B MONITORING WELL INSTALLATION REPORTS

Well No. MW-13A Project Name Sheller-Globe (3200 Main Street) Project No. 91C7343 Keokuk, lowa Location____ Date 10/18/92 Hannibal Testing Labs, Inc. Installed by_ Time 12:20 Inspected by G. Papinako, Woodward-Clyde Consultants Method of Installation Filter pack, Volclay grout placed through Boring No. _ the string of HSA Remarks Tremie pipe with deflector used for grout placement Depths ft. Elements/Identifiers **Elevations** - Top of riser pipe (datum) 622.90 623.43 - Ground Surface Surface casing Flush mounted manhole cover Type ----I.D. Inches _ Surface seal Concrete (Mix. #35) Type _____ Surface seal Riser pipe PVC Sch. 40 threaded, flush-coupled Type -I.D. inches 2 inch Backfill Volclay grout Type __ - Top of seal - Seal Type ____NA - Top of filter pack -Top of screen - Filter pack 12-28 silica sand Type _____ Screen PVC Sch. 40 Mill slotted, flush-coupled, threaded Type ___ I.D. inches _ 2 inches 0.01 inch Slot size __ 10.1 Bottom of screen Blank pipe 10.6 - Plug Backfill below well plug Type Native materials 11.0 Bottom of boring Boring diameter 7 7/8 inches

Well No. MW-13B Project Name Sheller-Globe (3200 Main Street) Project No. 91C7343 Location Keokuk, Iowa Date 10/17/92 Installed by Hannibal Testing Labs, Inc. Time 15:50 Inspected by G. Papinako, Woodward-Clyde Consultants Boring No. ____ Method of Installation Filter pack, Volclay grout placed through the string of HSA Remarks Tremie pipe with deflector used for grout placement Depths ft. Elements/Identifiers **Elevations** Top of riser pipe (datum) 623.43 624.18 - Ground Surface Surface casing Flush mounted manhole cover Type ----I.D. Inches _ Surface seal Type Concrete (Mix. #35) 1.6 Surface seal Riser pipe PVC Sch. 40 threaded, flush-coupled Type ----I.D. inches 2 inch Backfill 37.0 Type Volclay grout - Top of seal Seal Type 1/4 inch Volclay tablets 37.7 - Top of filter pack 40.5 Top of screen Filter pack Type 12-28 silica sand Screen PVC Sch. 40 Mill slotted, flush-coupled, threaded Type _ I.D. inches 2 inches 0.01 inch Slot size ____ 50.5 Bottom of screen Blank pipe 51.0 - Plug Backfill below well plug Type Native materials 53.0 -Bottom of boring -Boring diameter 7 7/8 inches

Well No. MW-17A Project Name Sheller-Globe (3200 Main Street) Project No. <u>91C7343</u> Keokuk, Iowa Location____ Date 10/14/92 Hannibal Testing Labs, Inc. Installed by__ Time 14:15 Inspected by G. Papinako, Woodward-Clyde Consultants Boring No. _ Method of Installation Filter pack, Volclay grout placed through the string of HSA Remarks_ Depths ft. Elements/Identifiers **Elevations** Top of riser pipe (datum) 620.29 620.67 - Ground Surface Surface casing Flush mounted manhole cover Type ----I.D. Inches _ Surface seal Type Concrete (Mix. #35) Surface seal Riser pipe PVC Sch. 40 threaded, flush-coupled Type -I.D. inches 2 inch Backfill Volclay grout Туре _____ Top of seal Seal Type NA Top of filter pack Top of screen Filter pack Type 12-28 silica sand Screen PVC Sch. 40 Mill slotted, flush-coupled, threaded Type _ 2 inches I.D. inches _ 0.01 inch Slot size __ 10.2 Bottom of screen Blank pipe 10.7 · Plug Backfill below well plug Type _____ 12-28 silica sand 11.0 -Bottom of boring -Boring diameter 7 7/8 inches

Well No. MW-17B Project Name Sheller-Globe (3200 Main Street) Project No. 91C7343 Location Keokuk, Iowa Date 10/14/92 Hannibal Testing Labs, Inc. Installed by___ Time 09:30 Inspected by G. Papinako, Woodward-Clyde Consultants Boring No. ___ Method of Installation Filter pack, Volclay grout placed through the string of HSA Remarks Tremie pipe with deflector used for grout placement Depths ft. Elements/Identifiers **Elevations** - Top of riser pipe (datum) 620.67 620.88 - Ground Surface Surface casing Flush mounted manhole cover Type ----I.D. Inches _ Surface seal Concrete (Mix. #35) Type _____ Surface seal Riser pipe PVC Sch. 40 threaded, flush-coupled Type -I.D. inches 2 inch Backfill 20.6 Volclay grout Type ____ Top of seal Seal Type 1/4 inch Volclay tablets 21.2 Top of filter pack 23.7 Top of screen Filter pack Type 12-28 silica sand PVC Sch. 40 Mill slotted, flush-coupled, threaded 2 inches I.D. inches _ Slot size _____0.01 inch 33.7 Bottom of screen Blank pipe 34.2 - Plug Backfill below well plug Type 12-28 silica sand, Native materials 35.0 - Bottom of boring -Boring diameter 7 7/8 inches

Project Name Sheller-Globe (3200 Location Keokuk, Iowa Installed by Hannibal Testing La Inspected by G. Papinako, Woods Method of Installation Filter pack, through the string of HSA Remarks Tremie pipe with deflector	bs, Inc. ward-Clyde Consultants seal and Volclay grout placed	Well NoMW-16 Project No. 91C7343 Date 10/16/92 Time 11:10 Boring No
Depths ft.	Elements/Identif	iers Elevations
	Top of riser pipe (datu Ground Surface Surface casing Type I.D. Inches	625.07
	Surface seal Type Concret Surface seal	te (Mix. #35)
_22.8	Riser pipe Type Type I.D. inches 2 inch Backfill Type Top of seal	
23.0	Seal Type1/4 inc	h Volclay tablets
_25.1	Top of screen	
		Mill slotted, flush-coupled, threaded
25.1	Slot size0.01 in	
35.1	Bottom of screen Blank pipe	
35.6	Plug	
36.0	Backfill below well plug Type 12-28 : Bottom of boring Boring diameter 7 7/8 i	silica sand. Native materials

Well No. _____MW-18 Project Name Sheller-Globe (3200 Main Street) Project No. 91C7343 Keokuk, lowa Location____ Date 10/15/92 Hannibal Testing Labs, Inc. Installed by_ Time <u>13:20</u> Inspected by G. Papinako, Woodward-Clyde Consultants Method of Installation Filter pack, Bentonite seal, Volclay grout Boring No. _ placed through the string of HSA Remarks Tremie pipe with deflector used for grout placement Depths ft. Elements/Identifiers **Elevations** - Top of riser pipe (datum) 623.45 623.84 - Ground Surface Surface casing Flush mounted manhole cover Type -----I.D. Inches _ Surface seal Concrete (Mix. #35) Type _____ Surface seal Riser pipe PVC Sch. 40 threaded, flush-coupled Type -I.D. inches 2 inch Backfill Volclay grout Type __ - Top of seal Seal Type _____1/4 inch Volclay tablets 23.2 - Top of filter pack 25.0 Top of screen - Filter pack Type 12-28 silica sand Screen Type PVC Sch. 40 Mill slotted, flush-coupled, threaded 2 inches I.D. inches _ Slot size _____0.01 inch 35.0 Bottom of screen Blank pipe

- Plug

Backfill below well plug

Boring diameter 7 7/8 inches

- Bottom of boring

35.5

36.0

Type 12-28 silica sand, Native materials

APPENDIX C SAMPLE COLLECTION FIELD SHEETS

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Facilty at 3200 N	PROJECT NUMBER: 91(7343
SAMPLE NUMBER: MW-10	PERSONNEL: D. Kocour,
LOCATION DESCRIPTION Parking lot	of the Plant 6. Papinako
SAMPLE MEDIA (circle one): GROUNDWA	TER SURFACEWATER OTHER:
	SPLIT SAMPLE NUMBER: MW-19 (blind dudied
WATER LEVEL: 0.92 ft,	- The sopression
WATER LEVEL MEASUREMENT FROM TOP	OF RISER PIPE: 0.92 ft.
COLLECTION: YR: 92 MO: 11 DAY	: 02 TIME: 8; CO METHOD: Bailing
SAMPLE CONTAINER PRE	SERVATIVE ANALYSIS REQUESTED
3-40m/glass vials HCL	TCL Volitiles + MIBK,
	Hexane, and Butunol
FIELD ANALYSIS	,
TEMPERATURE.C 13	DATE 11/2/92
SAMPLE PH 6.1	TIME 8:00
SALINITY, PARTS PER THOUO	APPEARANCE CLAN
CONDUCTIVITY, umhos/cm 1000	ODOR
pH BUFFER BEFORE 7.0 - 4.0	PH BUFFER AFTER 7.0 - 4.1
COMMENTS	
DEVELOPMENT/PURGING	
WATER LEVEL BEFORE 0.92 St. 1,24ft	CASING DIAMETER - 4 in.
WATER LEVEL BEFORE 6.92 St. 1.24+1 WATER LEVEL AFTER Bailed dry	TIME STARTED 16:00
EST. VOLUME REMOVED 35 ALS	TIME COMPLETED 16:50
HNU/OVA, BACKGROUND O.4 MM	METHOD Bailing
HNU/OVA, WELL HEAD 7.0 pm	HNU/OVA, BREATHING ZONE O.4 PPM
COMMENTS	

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Facility at 320		NUMBER: 9147343
LOCATION DESCRIPTION Parking SAMPLE MEDIA (circle one): GROUN	NDWATER SURFACEWATE	
SAMPLE SPLIT (circle one): YES (WATER LEVEL: WATER LEVEL MEASUREMENT FROM	TOP OF RISER PIPE: 5	5.55 f +.
COLLECTION: YR: 92 MO:	DAY: 2 TIME: 0815	METHOD: Bailing
SAMPLE CONTAINER	PRESERVATIVE	ANALYSIS REQUESTED
3-40 ml glass viols	HCL	TLL Volatiles + MIRK, Hexune, and Butand
	*	
	λ	
FIELD ANALYSIS TEMPERATURE, C 7,0 SAMPLE pH 6.4 SALINITY, PARTS PER THOU 0 CONDUCTIVITY, umhos/cm 900 pH BUFFER BEFORE 7.0 - 4.0 COMMENTS		
DEVELOPMENT/PURGING DATE 1, 42 WATER LEVEL BEFORE 6.00 ft. WATER LEVEL AFTER 8.23 ft EST. VOLUME REMOVED 15 pals HNU/OVA, BACKGROUND 0.4 ppm HNU/OVA, WELL HEAD BG COMMENTS	CASING DIAMETER WELL DEPTH (SOU TIME STARTED I TIME COMPLETED METHOD BAIL HNU/OVA, BREATH	NDED) 34.40 ft. 7:30 18:10
	e e	

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scheller- Globe	(3200 Main) PROJECT N	UMBER: 9167343
SAMPLE NUMBER: MW-13		PERSONNEL	D. Kocour
LOCATION DESCRIPTION Park	ine let of	the facility	G. Papinako
SAMPLE MEDIA (circle one): GR	COUNDWATER	SURFACEWATER	OTHER:
SAMPLE SPLIT (circle one): YES			
WATER LEVEL:			
WATER LEVEL MEASUREMENT FR			
COLLECTION: YR: 92 MO: 1	DAY:	TIME: 2020	METHOD: Bailing
SAMPLE CONTAINER	PRESER'	VATIVE	ANALYSIS REQUESTED
3-40 ml glass vinls	H61		TCL Volatiles + MIBK, Hexane, Batanol
			•
·			
FIELD ANALYSIS		11	
TEMPERATURE.C 15.0 SAMPLE PH 5.9	D	ATE (12 6	2
SALINITY, PARTS PER THOU O		PPEARANCE	*
CONDUCTIVITY, umhos/cm 115		DOR	•
pH BUFFER BEFORE 4.0 - 7.0		H BUFFER AFTER	4.0 - 6.9
COMMENTS			
DEVELOPMENT/PURGING			
DATE - 11 1/12		ASING DIAMETER	
WATER LEVEL BEFORE 2.69 WATER LEVEL AFTER 2.55		ELL DEPTH (SOUNI	•
EST. VOLUME REMOVED 15 and		IME COMPLETED 7	
HNu/OVA, BACKGROUND 0.4	M	ETHOD Bailing	
HNU/OVA. WELL HEAD 40 ppm	Н	Nu/OVA. BREATHI	NG ZONE O.4 ppm
COMMENTS			

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scheller-Globe (3200 M	PROJECT	NUMBER: 9/C 73 13
SAMPLE NUMBER:			NEL: J. Koepur.
			6. Papinako
LOCATION DESCRIPTION Facili	y park	105	
SAMPLE MEDIA (circle one): GRO			
SAMPLE SPLIT (circle one): YES	(NO): SP	LIT SAMPLE NUN	4BER:
WATER LEVEL:			
WATER LEVEL MEASUREMENT FRO			6.58 ft.
COLLECTION: YR: 92 MO: 11	_ DAY:_	2 TIME	METHOD: Bailing
SAMPLE CONTAINER	PRESE	RVATIVE	ANALYSIS REQUESTED
			*
3 x 40 ml glass vials	HCI		TCL Volatiles + MIBX
			Mexame, Butana
			•
FIELD ANALYSIS		22 /	
TEMPERATURE, C 15.2		DATE 92/11/2	
SAMPLE PH 5.5		TIME 1130	
SALINITY, PARTS PER THOU 0.2		APPEARANCE <u>Cl</u>	ear .
CONDUCTIVITY, umhos/cm 1150		-	0 1:0 70
ph Buffer Before 4.0 - 7.0 COMMENTS		pH BUFFER AFTE	R 4.0 - 7.0
COMMENTS			
DEVELOPMENT/PURGING			
DATE 11-02-92		CASING DIAMETE	
WATER LEVEL BEFORE 2.42		WELL DEPTH (SO	
WATER LEVEL AFTER 6.58		TIME STARTED _	
EST. VOLUME REMOVED 5 pols		TIME COMPLETED	
HNU/OVA, BACKGROUND 0.4 pp.		METHOD Bailin	
HNU/OVA, WELL HEAD 2.2 pp.	M	HINU/OVA, BREAT	HING ZONE 0.4 pp
COMMENTS			

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Schole - Globe (1200 M. SAMPLE NUMBER: MW-13B) LOCATION DESCRIPTION SAMPLE MEDIA (circle one): GROUNDWAT SAMPLE SPLIT (circle one): YES NO: S WATER LEVEL: WATER LEVEL MEASUREMENT FROM TOP C COLLECTION: YR: 12 MO: 11 DAY:	PERSONNEL: D. Kocour, G. Papinako TER SURFACEWATER OTHER: SPLIT SAMPLE NUMBER:
SAMPLE CONTAINER PRES 40 ml glass vial (3) HCI	TCL Volatiles + MIBK Mexane, Butanol
FIELD ANALYSIS TEMPERATURE, C 12.9 SAMPLE PH 5.9 SALINITY, PARTS PER THOU 0 CONDUCTIVITY, umhos/cm 830 PH BUFFER BEFORE 4.0 - 7.0 COMMENTS	DATE 1/2/92 TIME 1/00 APPEARANCE Clear ODOR None ph Buffer After 4:1-6.9
DEVELOPMENT/PURGING DATE 11-02-92 WATER LEVEL BEFORE 7.29 WATER LEVEL AFTER 43.58 EST. VOLUME REMOVED 13 pals (bailed dry) HNU/OVA, BACKGROUND A4 ppm HNU/OVA, WELL HEAD BG COMMENTS	CASING DIAMETER 2:1/hes WELL DEPTH (SOUNDED) 50.11 TIME STARTED 7:50 TIME COMPLETED 8:25 METHOD Bailing HNU/OVA, BREATHING ZONE BG

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scholler - Globe ()	3200 Main-St)	PROJECT NUMBER: 9167343
SAMPLE NUMBER: MW-14		PERSONNEL: D. Kocour,
LOCATION DESCRIPTION For	21114	6, Papinako
SAMPLE MEDIA (circle one): GRO		REACEWATER OTHER:
SAMPLE SPLIT (circle one): YES		
WATER LEVEL:	(10). 31 ETT 3A	WI LE NOMBEN.
WATER LEVEL MEASUREMENT FRO	M TOP OF RISER	PIPF: 10.07
COLLECTION: YR: 92 MO: 11		
SAMPLE CONTAINER	PRESERVATIV	E ANALYSIS REQUESTED
3-40m glass viuls	#CL	T(LUolatiles + MIBK
S TOM Glas Orals	HUL	Mexane + But and
FIELD ANALYSIS		
TEMPERATURE, C 2.0	DATE _	
SAMPLE PH 6.0	TIME _	
CONDUCTIVITY, umhos/cm 105		RANCE Clear
pH BUFFER BEFORE 4.0-7.0		FER AFTER 4.1 - 6.9
COMMENTS		
DEVELOPMENT/PURGING		
DATE 11/1/42	CASING	DIAMETER 2 10.
WATER LEVEL BEFORE 9.40		EPTH (SOUNDED) 32.46 ft.
WATER LEVEL AFTER	TIME S	TARTED 16:55
EST. VOLUME REMOVED 15 gals		OMPLETED 17:25
HNu/OVA, BACKGROUND O.4 PAM		- Bailing
HNU/OVA, WELL HEAD BG	HNu/OV	A. BREATHING ZONE B6
COMMENTS		,

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scheller - Globe (3200 Main St)	PROJECT NUMBER	2: 9167343
SAMPLE NUMBER:	,		locour
LOCATION DESCRIPTION ONL		G. P.	apinako
SAMPLE MEDIA (circle one): GR	OLINDWATER SUE	DEACEWATER OTH	FD.
SAMPLE SPLIT (circle one): YES			
WATER LEVEL:	. 5/ 21/ 5/		
WATER LEVEL MEASUREMENT FRO	OM TOP OF RISER	PIPF. 490 (T
COLLECTION: YR: 92 MO: 11			
SAMPLE CONTAINER	PRESERVATIVE	E AN	ALYSIS REQUESTED
40 ml glass vial (3)	HCI	TCL	Volatiles, + NIAK
			me + Beetand
SISI D. AMALYZO			,
FIELD ANALYSIS	0.475	11-02-02	
TEMPERATURE. C [2.0] SAMPLE PH	UAIE _	0900	
SALINITY, PARTS PER THOU		ANCE	×
CONDUCTIVITY, umhos/cm 350	ODOR		
pH BUFFER BEFORE 4.0 - 7.0		FER AFTER 4.0 -	
COMMENTS			
DEVELOPMENT/PURGING			
DATE 11-01-92		DIAMETER 2	
WATER LEVEL BEFORE 9.40		EPTH (SOUNDED)	32.46
WATER LEVEL AFTER 9.50		TARTED 17:25	
EST. VOLUME REMOVED +2 gals		DMPLETED 17:50 Bailing	
HNU/OVA, BACKGROUND D.Y PPA HNU/OVA, WELL HEAD BG		A. BREATHING ZOI	NE 16
COMMENTS	,		

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scheller- 610be	PROJECT N	NUMBER: 9167873
SAMPLE NUMBER: NW-17A	PERSONNE	L: D. Kocow
LOCATION DESCRIPTION Area adjacent	to the Continue Pour	6. Papinako
SAMPLE MEDIA (circle one): GROUNDWAT		
SAMPLE SPLIT (circle one): YES NO:		
WATER LEVEL:	or err omm ee mome	
WATER LEVEL MEASUREMENT FROM TOP	OF RISER PIPE: 3	25 14
COLLECTION: YR: 92 MO: 11 DAY:	2 TIME: 1075	METHOD:
142		
SAMPLE CONTAINER PRES	SERVATIVE	ANALYSIS REQUESTED
40 of glass rial (3) HCI		TCL Volatiles, MIBK,
		Mexame, Butano
· · · · · · · · · · · · · · · · · · ·		
FIELD ANALYSIS	2.75	
TEMPERATURE. C 13.0 SAMPLE PH 6.0	DATE 11 1 42	- 1015
SALINITY, PARTS PER THOU 0.5	APPEARANCE (1	e w
CONDUCTIVITY, umhos/cm 1500	ODOR	
pH BUFFER BEFORE	PH BUFFER AFTER	
COMMENTS		
DEVELOPMENT/PURGING		
DATE W/ 192	CASING DIAMETER	2 inches
WATER LEVEL BEFORE 3.55	WELL DEPTH (SOUN	IDED) 10.63 ft.
WATER LEVEL AFTER Bailed dry	TIME STARTED 16	
EST. VOLUME REMOVED 5 5 ds	TIME COMPLETED _	17:20
HNU/OVA, BACKGROUND 0.2 MM	METHOD BALL NO HNU/OVA, BREATHI	NC ZONE A.
HNU/OVA, WELL HEAD	DIVILIANA REPAIRI	NIL / LINE -
COMMENTS	TING/OVA, BREATIN	NO SOME PB

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Schiller - Globe	PROJECT NUMBER: 116 73 43
SAMPLE NUMBER: NW-178	PERSONNEL: D. Kucoun, G. Papinako
LOCATION DESCRIPTION	6. Papinako
	NATER SURFACEWATER OTHER:
	7: SPLIT SAMPLE NUMBER:
WATER LEVEL: Jop of Casing	
WATER LEVEL MEASUREMENT FROM TO	P OF RISER PIPE: OH
COLLECTION: YR: 92 MO: (1 D	AY: 2 TIME: 1000 METHOD: Bouling
SAMPLE CONTAINER PE	RESERVATIVE ANALYSIS REQUESTED
3-40ml glass vias HCI	TCL Volatiles + MIBK
- John glas Vias	Hlxune, Botano
-	
*	
FIELD ANALYSIS	1-1
TEMPERATURE. C (1.0	DATE 1/2/92
SAMPLE PH 6,4 SALINITY, PARTS PER THOU 0	APPEARANCE SIGNEY Cloudy
CONDUCTIVITY, umhos/cm 800	ODOR STATISTICS
pH BUFFER BEFORE	
COMMENTS	
DEVELOPMENT/PURGING	
DATE W/192	CASING DIAMETER
WATER LEVEL BEFORE Top of casing	WELL DEPTH (SOUNDED) 33.61 +.
WATER LEVEL AFTER 2.72	TIME STARTED 16:00
EST. VOLUME REMOVED 20 jule	TIME COMPLETED 16: 30
HNU/OVA, BACKGROUND D.4 ppm HNU/OVA, WELL HEAD BG	METHOD Bailing HNU/OVA, BREATHING ZONE & G
COMMENTS	THIS OTA, DICAMINO ZONE

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: Scheller - Globe (32	DD Main)	PROJECT NUMBER: 9167343
SAMPLE NUMBER:		PERSONNEL: D. KOLOW
	0 1 / 4	6. Papinako
LOCATION DESCRIPTION Facility		25425144752 27452
SAMPLE MEDIA (circle one): GROU		
SAMPLE SPLIT (circle one): YES	MO: SPLIT SA	MPLE NUMBER:
WATER LEVEL:		(2.2. ()
WATER LEVEL MEASUREMENT FROM		
COLLECTION: YR: 12 MO: H	DAY: 1	TIME: 0920 METHOD: Bailing
SAMPLE CONTAINER	PRESERVATIVE	ANALYSIS REQUESTED
40 ml glass vial	HCL	TCL Volatiles, ALBK
		Mexane, Butanal
FIELD ANALYSIS		1 1
TEMPERATURE, C 12.0	DATE _	11/2/12
SAMPLE PH 6.7	TIME _	69'20
SALINITY, PARTS PER THOU		ANCE slightly turbed
CONDUCTIVITY, umhos/cm 600		J (
PH BUFFER BEFORE 4.0 - 7.0	pH BUF	FER AFTER 4.1 - 7.1
COMMENTS		
DEVELOPMENT/PURGING		a
DATE 11/1/12		DIAMETER Linches
WATER LEVEL BEFORE 6.77		EPTH (SOUNDED)35.30
WATER LEVEL AFTER 7.05		TARTED 17:55
EST. VOLUME REMOVED 15 sals		DMPLETED 18:20
HNU/OVA, BACKGROUND O.4		Bailing A. BREATHING ZONE B6
HNU/OVA, WELL HEAD		A, DICATITING ZOINE P6
COMMITTALS		

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: SHELLER - GLOBE		PROJECT	NUMBER: 41 C 73 4 3
SAMPLE NUMBER: MW - 13		PERSONNE	L: T. Andrews,
LOCATION DESCRIPTION 3200 Ma	stn.t		G. Papinako
LOCATION DESCRIPTION 3200 712	in street	- Employe	res Parking lot
SAMPLE MEDIA (circle one): GROUNDW			
SAMPLE SPLIT (circle one): YES (NO)	: SPLIT SAM	APLE NUME	BER:
WATER LEVEL:			F
WATER LEVEL MEASUREMENT FROM TO	P OF RISER	PIPE:	2.79
COLLECTION: YR: 93 MO: 0) DA	AY: 27 T	IME: <u>8; 北</u>	METHOD: Bailing
SAMPLE CONTAINER PF	RESERVATIVE		ANALYSIS REQUESTED
30 ml glass vial (3	HC1 + Coo	11.6	TCL Volatiles +
*			MIBK, Butanol, Hexani - Method 8240
			THE THE SE TO
EIELD ANALYSIS			
FIELD ANALYSIS			
TEMPERATURE, C 7	_ DAIE _	93/01	/ 27
SAMPLE pH 2066	_ IIME	8:30	
SALINITY, PARTS PER THOU 2.0	_ APPEAR	ANCE	ear
CONDUCTIVITY, umhos/cm 1300			
PH BUFFER BEFORE 4.0 - 7.0		ER AFIER	
COMMENTS			
DEVELOPMENT/PURGING			
DATE 01-26-93	CASING	DIAMETER	2.0 inch
WATER LEVEL BEFORE 2.68			NDED) 27.9
WATER LEVEL AFTER			
EST. VOLUME REMOVED 15 sels	TIME CO	MPLETED	
HNu/OVA, BACKGROUND C.4 Ppm	METHOD	Bailing	wy stainless steel bailer
HNU/OVA, WELL HEAD 22 ppm	HNu/OV	A, BREATH	ING ZONE 0.4 ppm
COMMENTS			

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: SHELLER - GLOBE	PROJE	CT NUMBER: 9167343	
SAMPLE NUMBER: MW - 13 A	PERSO	NNEL: Terry Andrews	
LOCATION DESCRIPTION Monitoring	well dustes	ene Papinako	
SAMPLE MEDIA (circle one): GROUNDWA	TER SURFACEW	ATER OTHER:	
SAMPLE SPLIT (circle one): YES (NO :			
WATER LEVEL:	SI ETT SAMILE TO	OWBEN.	
WATER LEVEL MEASUREMENT FROM TOP	OF RISER PIPE:	2.15	
COLLECTION: YR: 73 MO: ()1 DAY	-		
SAMPLE CONTAINER PRE	SERVATIVE	ANALYSIS REQUESTED	
30 ml glass Vial (3) HC	ss Vial (3) HCI		
	,	MIBK, Hexane,	
		Butanol	
FIFT D. ANN. YOU			
FIELD ANALYSIS	0.15 01/27	/ / 4 2	
TEMPERATURE, C 7 SAMPLE pH 6.4	DATE 01/27 TIME 8:15	•	
SALINITY, PARTS PER THOU 3		Slightly opeque	
CONDUCTIVITY, umhos/cm 2350	ODOR None		
pH BUFFER BEFORE 42.7.0	PH BUFFER AFTER 1.3 - 7.0		
COMMENTS	•		
DEVELOPMENT/PURGING			
DATE 01-26-93	CASING DIAMETER 2,0 inch.		
WATER LEVEL BEFORE 2.29	WELL DEPTH (SOUNDED) 10.3		
WATER LEVEL AFTER Bailed dry	TIME STARTED		
EST. VOLUME REMOVED 5 gals		TIME COMPLETED	
HNU/OVA, BACKGROUND U.4	HNU /OVA RPE	METHOD Bailing w/ teflow bailer HNU/OVA, BREATHING ZONE 0.4 ppm	
HNu/OVA, WELL HEAD 13 0 PP-9 COMMENTS	- THU, OVA, BREA	THILING ZOINE U,4 ppm	

5055 Antioch Road Overland Park, Kansas 66203 (913) 432-4242

PROJECT NAME: SHELLER - GLOBE	PROJEC	CT NUMBER: 9167343		
SAMPLE NUMBER: MW 138 PERSO		NNEL: T. Andrews		
LOCATION DESCRIPTION Maniforme	well 2 +1 D	G. Papinako		
LOCATION DESCRIPTION Monitoring well & the Parking Lot SAMPLE MEDIA (circle one): GROUNDWATER) SURFACEWATER OTHER:				
SAMPLE SPLIT (circle one): YES NO				
WATER LEVEL:		SMBER.		
WATER LEVEL MEASUREMENT FROM TOP		34 68		
COLLECTION: YR: 93 MO: 01 DA	-			
		V		
SAMPLE CONTAINER PR	ESERVATIVE	ANALYSIS REQUESTED		
30 ml Vial (3)	HCI	TCL Volatiles,		
		MIBK, Hexane,		
		Butanol		
FIELD ANALYSIS				
TEMPERATURE, C 12	DATE 01/2-	7 / 97		
SAMPLE pH 6.6	TIME 8:45	7 / 97		
SALINITY, PARTS PER THOU 1.5	ITY, PARTS PER THOU 1.5 APPEARANCE Clear			
CONDUCTIVITY, umhos/cm 1150 ODOR None				
pH BUFFER BEFORE 7.0 - 4.1 PH BUFFER AFTER 6.8 - 7.2		TER 6.8 - 7.2		
COMMENTS				
DEVELOPMENT/PURGING				
DATE 13/01/26	-	CASING DIAMETER 2.0 inch		
WATER LEVEL BEFORE 1,17	_	WELL DEPTH (SOUNDED) 50.1		
WATER LEVEL AFTER Bailed dry	-	TIME STARTED		
EST. VOLUME REMOVED - 13 gals				
HNU/OVA, BACKGROUND 0.4 ppm HNU/OVA, WELL HEAD 0.4 ppm	HNu/OVA, BREA	METHOD Bailing wy stainless steel bailer HNU/OVA, BREATHING ZONE 0.4 ppm		
COMMENTS				

APPENDIX D ENSECO ANALYTICAL REPORTS

ANALYTICAL RESULTS

FOR

WOODWARD-CLYDE CONSULTANTS
ENSECO-RMAL NO. 026066

NOVEMBER 17, 1992

November 17, 1992

Mr. Dave Kocour Woodward-Clyde Consultants 5055 Antioch Road Overland Park, KS 66203-0777

Dear Mr. Kocour:

Enclosed is the report for 12 aqueous samples received at Enseco-Rocky Mountain Analytical Laboratory on November 11, 1992.

Included with the report is a quality control summary.

Please call if you have any questions.

Sincerely,

Keith M. Beauvats
Program Administrator

KMB/ki Enclosures

RMAL #026066 United Technologies **ANALYTICAL RESULTS**

FOR

WOODWARD-CLYDE CONSULTANTS

ENSECO-RMAL NO. 026066

NOVEMBER 17, 1992

Reviewed by:

Keith M. Beauvais

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report

Samples 026066-0001, -0003 and -0011 were diluted for Method 8240 due to the presence of target compounds. The non-target compound, Trichlorofluoromethane was also detected at high levels. The presence of this compound was confirmed against a standard. Samples 026066-0004 and -0005 were also diluted for Method 8240 due to the presence of target compounds. The reporting limits have been adjusted relative to the required dilution.

Butanol was searched for by mass chromatogram and not detected.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

ANALYTICAL TEST REQUESTS for Woodward-Clyde Consultants

Lab ID:	Group	Analysis Description	Custom
026066	Code		Test?
0001 - 0012	Α	Volatile Organics Target Compound List (TCL) Screen - Volatile Organics	Y Y N

SAMPLE DESCRIPTION INFORMATION for Woodward-Clyde Consultants

Lab ID	Client ID	Matrix	Sampl Date	ed Time	Received Date
026066-0001-SA 026066-0002-SA 026066-0003-SA 026066-0004-SA 026066-0005-SA 026066-0006-SA 026066-0007-SA 026066-0008-SA 026066-0010-SA 026066-0011-SA 026066-0012-TB	MW-10 MW-11 MW-13A MW-13B MW-14 MW-16 MW-17A MW-17B MW-17B MW-19 TRIP BLANK	WATER	02 NOV 92 02 NOV 92	08:15 08:30 08:45 09:00 09:15 09:30 09:45 10:00 10:15 08:00	03 NOV 92 03 NOV 92

Client Name: Woodward-Clyde Consultants Client ID: MW-10

026066-0001-SA Lab ID:

Sampled: 02 NOV 92 Prepared: 05 NOV 92 WATER Received: 03 NOV 92 Analyzed: 08 NOV 92 Matrix: 03 NOV 92 Authorized:

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	2000
Benzene	ND	ug/L	1000
Bromodichloromethane	ND	ug/L	1000
Bromoform	ND	ug/L	1000
Bromomethane	ND	ug/L	2000
2-Butanone (MEK)	ND	ug/L	2000
Carbon disulfide	ND	ug/L	1000
Carbon tetrachloride	ND	ug/L	1000 1000
Chlorobenzene	ND ND	ug/L	2000
Chloroethane Chloroform	ND	ug/L ug/L	1000
Chloromethane	ND	ug/L	2000
Dibromochloromethane	ND	ug/L	1000
1,1-Dichloroethane	ND	ug/L	1000
1,2-Dichloroethane	ND	ug/L	1000
1,1-Dichloroethene	ND	ug/L	1000
1,2-Dichloroethene		-3/ -	
(total)	ND	ug/L	1000
1,2-Dichloropropane	ND	ug/L	1000
cis-1,3-Dichloropropene	ND	ug/L	1000
trans-1,3-Dichloropropene	ND	ug/L	1000
Ethylbenzene	ND	ug/L	1000
2-Hexanone	ND	ug/L	2000
Methylene chloride	12000	ug/L	1000
4-Methyl-2-pentanone	ND	ua /1	2000
(MIBK)	ND	ug/L ug/L	1000
Styrene 1,1,2,2-Tetrachloroethane	ND	ug/L	1000
Tetrachloroethene	ND	ug/L	1000
Toluene	ND	ug/L	1000
1,1,1-Trichloroethane	1200	ug/L	1000
1,1,2-Trichloroethane	ND	ug/L	1000
Trichloroethene	1800	ug/L	1000
Vinyl acetate	ND	ug/L	2000
Vinyl chloride	ND	ug/L	2000
Xylenes (total)	ND	ug/L	1000
4-Methyl-2-pentanone	ND	ug/L	1000
Hexane	ND	ug/L	1000

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-10

Lab ID:

026066-0001-SA

Matrix: Authorized:

WATER 03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 08 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4 104 101 93

% % %

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-11

026066-0002-SA Lab ID:

Sampled: 02 NOV 92 Prepared: 05 NOV 92 Received: 03 NOV 92 Analyzed: 06 NOV 92 Matrix: WATER Authorized: 03 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	10
Benzene	ND	ug/L	5.0
Bromodichloromethane	ND	ug/L	5.0
Bromoform	ND	ug/L	5.0
Bromomethane	ND	ug/L	10
2-Butanone (MEK)	ND	ug/L	10
Carbon disulfide	ND	ug/L	5.0
Carbon tetrachloride	ND	ug/L	5.0
Chlorobenzene	ND	ug/L	5.0
Chloroethane	ND	ug/L	10
Chloroform	ND	ug/L	5.0 10
Chloromethane	ND ND	ug/L	5.0
Dibromochloromethane	ND	ug/L	5.0
1,1-Dichloroethane 1,2-Dichloroethane	ND	ug/L ug/L	5.0
1,1-Dichloroethene	ND	ug/L	5.0
1,2-Dichloroethene	ND	ug/ L	3.0
(total)	6.0	ug/L	5.0
1,2-Dichloropropane	ND.	ug/L	5.0
cis-1,3-Dichloropropene	ND	ug/L	5.0
trans-1,3-Dichloropropene	ND	ug/L	5.0
Ethylbenzene	ND	ug/L	5.0
2-Hexanone	ND	ug/L	10
Methylene chloride	ND	ug/L	5.0
4-Methyl-2-pentanone		-	
(MIBK)	ND	ug/L	10
Styrene	ND	ug/L	5.0
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0
Tetrachloroethene	ND	ug/L	5.0
Toluene	ND	ug/L	5.0
1,1,1-Trichloroethane	ND	ug/L	5.0
1,1,2-Trichloroethane	ND	ug/L	5.0
Trichloroethene	ND	ug/L	5.0
Vinyl acetate	ND ND	ug/L	10 10
Vinyl chloride	ND ND	ug/L	5.0
Xylenes (total)	ND	ug/L ug/L	5.0
4-Methyl-2-pentanone Hexane	ND	ug/L	5.0
HEXAIIE	NU	ug/ L	5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Keith Campbell

Client Name: Woodward-Clyde Consultants

MW-11

Client ID: Lab ID: 026066-0002-SA

Received: 03 NOV 92 Analyzed: 06 NOV 92 Sampled: 02 NOV 92 Prepared: 05 NOV 92 WATER Matrix: 03 NOV 92 Authorized:

Recovery Surrogate

Toluene-d8	105	%
4-Bromofluorobenzene	105	%
1,2-Dichloroethane-d4	104	%

ND = Not detected NA = Not applicable

Reported By: Keith Campbell

Client Name: Woodward-Clyde Consultants Client ID: MW-13

026066-0003-SA Lab ID:

Sampled: 02 NOV 92 Prepared: 05 NOV 92 Matrix: WATER Received: 03 NOV 92 Analyzed: 09 NOV 92 Authorized: 03 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone	ND ND	ug/L	5000 2500
Benzene Bromodichloromethane	ND	ug/L ug/L	2500
Bromoform	ND -	ug/L	2500
Bromomethane	ND	ug/L	5000
2-Butanone (MEK)	ND	ug/L	5000
Carbon disulfide	ND	ug/L	2500 2500
Carbon tetrachloride Chlorobenzene	ND ND	ug/L ug/L	2500
Chloroethane	ND	ug/L	5000
Chloroform	ND	ug/L	2500
Chloromethane	ND	ug/L	5000
Dibromochloromethane	ND	ug/L	2500
1,1-Dichloroethane	ND ND	ug/L	2500 2500
1,2-Dichloroethane 1,1-Dichloroethene	ND ND	ug/L ug/L	2500
1,2-Dichloroethene	NO	ug/ L	2500
(total)	ND	ug/L	2500
1,2-Dichloropropane	ND	ug/L	2500
cis-1,3-Dichloropropene	ND	ug/L	2500
trans-1,3-Dichloropropene	ND ND	ug/L	2500 2500
Ethylbenzene 2-Hexanone	ND	ug/L ug/L	5000
Methylene chloride	91000	ug/L	2500
4-Methyl-2-pentanone		-3/ -	
(MIBK)	ND	ug/L	5000
Styrene	ND	ug/L	2500
1,1,2,2-Tetrachloroethane Tetrachloroethene	ND 2700	ug/L ug/L	2500 2500
Toluene	33000	ug/L	2500
1,1,1-Trichloroethane	ND	ug/L	2500
1,1,2-Trichloroethane	ND	ug/L	2500
Trichloroethene	6000	ug/L	2500
Vinyl acetate	ND ND	ug/L	5000 5000
Vinyl chloride Xylenes (total)	2900	ug/L ug/L	2500
4-Methyl-2-pentanone	ND	ug/L	2500
Hexane	ND	ug/L	2500

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-13

Lab ID:

Authorized:

026066-0003-SA

Matrix:

WATER

03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 09 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4

101 100 93 % % %

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID: MW-13A

Lab ID: 026066-0004-SA

Matrix: WATER Sampled: 02 NOV 92 Received: 03 NOV 92 Authorized: 03 NOV 92 Prepared: 05 NOV 92 Analyzed: 06 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1200 620 620 1200 1200 620 620 620 1200 620 1200 620 620 620
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND 2300 ND	ug/L ug/L ug/L ug/L ug/L ug/L	620 620 620 620 620 1200 620
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1200 620 620 620 620 620 620 1200 1200 620 620

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Keith Campbell Approved

Client Name: Woodward-Clyde Consultants Client ID: MW-13A Lab ID: 026066-0004-SA

Matrix: Authorized: WATER 03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 06 NOV 92

Surrogate

Recovery

Toluene-d8	105	%
4-Bromofluorobenzene	106	%
1,2-Dichloroethane-d4	109	%
1,2 5,011,0100011		

ND = Not detected NA = Not applicable

Reported By: Keith Campbell

Client Name: Woodward-Clyde Consultants

Client ID:

MW-13B

Lab ID:

026066-0005-SA

Matrix:

WATER

Received: 03 NOV 92 Analyzed: 10 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92 03 NOV 92 Authorized:

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	170
Benzene	ND	ug/L	85
Bromodichloromethane	ND	ug/L	85
Bromoform	ND	ug/L	85
Bromomethane	ND	ug/L	170
2-Butanone (MEK)	ND	ug/L	170
Carbon disulfide	ND ND	ug/L	85 85
Carbon tetrachloride	ND ND	ug/L	85
Chlorobenzene	ND ND	ug/L	170
Chloroethane Chloroform	ND	ug/L ug/L	85
Chloromethane	ND	ug/L	170
Dibromochloromethane	ND	ug/L	85
1,1-Dichloroethane	ND	ug/L	85
1,2-Dichloroethane	ND	ug/L	85
1,1-Dichloroethene	ND	ug/L	85
1,2-Dichloroethene			
(total)	ND	ug/L	85
1,2-Dichloropropane	ND	ug/L	85
cis-1,3-Dichloropropene	ND	ug/L	85
trans-1,3-Dichloropropene	ND	ug/L	85
Ethylbenzene	ND ND	ug/L	85 170
2-Hexanone	1900	ug/L ug/L	85
Methylene chloride 4-Methyl-2-pentanone	1900	ug/ L	03
(MIBK)	ND	ug/L	170
Styrene	ND	ug/L	85
1,1,2,2-Tetrachloroethane	ND	ug/L	85
Tetrachloroethene	ND	ug/L	85
Toluene	ND	ug/L	85
1,1,1-Trichloroethane	ND	ug/L	85
1,1,2-Trichloroethane	ND	ug/L	85
Trichloroethene	ND	ug/L	85
Vinyl acetate	ND	ug/L	170 170
Vinyl chloride	ND ND	ug/L ug/L	85
Xylenes (total) 4-Methyl-2-pentanone	ND	ug/L ug/L	85
Hexane	ND	ug/L	85
HEAGHE	110	~9/ L	-

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-13B

026066-0005-SA Lab ID:

Received: 03 NOV 92 Analyzed: 10 NOV 92 Sampled: 02 NOV 92 WATER Matrix: Prepared: 05 NOV 92 03 NOV 92 Authorized:

Recovery Surrogate

% % 107 Toluene-d8 95 4-Bromofluorobenzene 96 % 1,2-Dichloroethane-d4

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-14

Lab ID:

026066-0006-SA

Matrix: WATER 03 NOV 92 Authorized:

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 10 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10 5.0 5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-14

Authorized:

Lab ID: Matrix:

026066-0006-SA

WATER 03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 10 NOV 92

% % %

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4 106 98 101

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-16

026066-0007-SA Lab ID:

Sampled: 02 NOV 92 Prepared: 05 NOV 92 Received: 03 NOV 92 Analyzed: 10 NOV 92 Matrix: WATER Authorized: 03 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	10
Benzene	ND	ug/L	5.0
Bromodichloromethane	ND	ug/L	5.0
Bromoform	ND	ug/L	5.0
Bromomethane	ND	ug/L	10
2-Butanone (MEK)	ND ND	ug/L	10 5.0
Carbon disulfide Carbon tetrachloride	ND ND	ug/L	5.0
Chlorobenzene	ND	ug/L ug/L	5.0
Chloroethane	ND	ug/L	10
Chloroform	ND	ug/L	5.0
Chloromethane	ND	ug/L	10
Dibromochloromethane	ND	ug/L	5.0
1,1-Dichloroethane	ND	ug/L	5.0
1,2-Dichloroethane	ND	ug/L	5.0
1,1-Dichloroethene	ND	ug/L	5.0
1,2-Dichloroethene	ND		
(total)	ND	ug/L	5.0
1,2-Dichloropropane	ND ND	ug/L	5.0 5.0
cis-1,3-Dichloropropene	ND ND	ug/L	5.0
trans-1,3-Dichloropropene Ethylbenzene	ND	ug/L ug/L	5.0
2-Hexanone	ND	ug/L	10
Methylene chloride	ND	ug/L	5.0
4-Methyl-2-pentanone		-3/ -	
(MIBK)	ND	ug/L	10
Styrène	ND	ug/L	5.0
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0
Tetrachloroethene	ND	ug/L	5.0
Toluene	ND	ug/L	5.0
1,1,1-Trichloroethane	ND	ug/L	5.0
1,1,2-Trichloroethane	ND ND	ug/L	5.0 5.0
Trichloroethene Vinyl acetate	ND	ug/L ug/L	10
Vinyl chloride	ND	ug/L	10
Xylenes (total)	ND	ug/L	5.0
4-Methyl-2-pentanone	ND	ug/L	5.0
Hexane	ND	ug/L	5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants

Client ID:

MW-16

026066-0007-SA

Lab ID: Matrix:

WATER

Authorized:

03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 10 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4 108 100 104

% % %

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-17A

026066-0008-SA Lab ID:

Sampled: 02 NOV 92 Prepared: 05 NOV 92 WATER Received: 03 NOV 92 Matrix: Authorized: 03 NOV 92 Analyzed: 09 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	5.8 ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-17A

Lab ID:

026066-0008-SA

WATER

Received: 03 NOV 92

Matrix: Authorized:

03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Analyzed: 09 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4 101 % % 98 95

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-17B

026066-0009-SA

Lab ID: Matrix:

WATER

03 NOV 92 Authorized:

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 09 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1.3-Dichloropropene trang 1,3-Dichloropropene Ethyloenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-17B

Authorized:

026066-0009-SA

WATER

03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 09 NOV 92

Surrogate

Lab ID:

Matrix:

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4

% % 99 99 95 %

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID: MW-18

Lab ID: 026066-0010-SA

Matrix: WATER Sampled: 02 NOV 92 Received: 03 NOV 92 Authorized: 03 NOV 92 Prepared: 05 NOV 92 Analyzed: 09 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone	ND ND	ug/L	10 5.0
Benzene Bromodichloromethane	ND	ug/L ug/L	5.0
Bromoform	ND	ug/L	5.0
Bromomethane	ND	ug/L	10
2-Butanone (MEK)	ND	ug/L	10
Carbon disulfide	ND	ug/L	5.0
Carbon tetrachloride	ND	ug/L	5.0
Chlorobenzene	ND	ug/L	5.0
Chloroethane	ND	ug/L	10
Chloroform	ND	ug/L	5.0
Chloromethane Dibromochloromethane	ND ND	ug/L	10 5.0
1,1-Dichloroethane	ND	ug/L ug/L	5.0
1,2-Dichloroethane	ND	ug/L	5.0
1,1-Dichloroethene	ND	ug/L	5.0
1,2-Dichloroethene		3,	
(total)	ND	ug/L	5.0
1,2-Dichloropropane	ND	ug/L	5.0
cis-1,3-Dichloropropene	ND	ug/L	5.0
trans-1,3-Dichloropropene	ND ND	ug/L	5.0 5.0
Ethylbenzene 2-Hexanone	ND	ug/L ug/L	10
Methylene chloride	ND	ug/L	5.0
4-Methyl-2-pentanone	ND	49/ -	0.0
(MIBK)	ND	ug/L	10
Styrène	ND	ug/L	5.0
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0
Tetrachloroethene	ND	ug/L	5.0
Toluene	ND	ug/L	5.0 5.0
1,1,1-Trichloroethane	ND ND	ug/L ug/L	5.0
1,1,2-Trichloroethane Trichloroethene	ND	ug/L	5.0
Vinyl acetate	ND	ug/L	10
Vinyl chloride	ND	ug/L	10
Xylenes (total)	ND	ug/L	5.0
4-Methyl-2-pentanone	ND	ug/L	5.0
Hexane	ND	ug/L	5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-18

026066-0010-SA

Lab ID: Matrix:

WATER

Sampled: 02 NOV 92

Received: 03 NOV 92

Authorized:

03 NOV 92

Prepared: 05 NOV 92

Analyzed: 09 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4

% % 102 97 97 %

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-19

Lab ID: 026066-0011-SA

Sampled: 02 NOV 92 Prepared: 05 NOV 92 Received: 03 NOV 92 Analyzed: 10 NOV 92 Matrix: WATER Authorized: 03 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone Benzene	ND ND	ug/L ug/L	2000 1000
Bromodichloromethane	ND	ug/L	1000
Bromoform	ND	ug/L	1000
Bromomethane	ND	ug/L	2000
2-Butanone (MEK) Carbon disulfide	ND ND	ug/L ug/L	2000 1000
Carbon tetrachloride	ND	ug/L	1000
Chlorobenzene	ND	ug/L	1000
Chloroethane	ND	ug/L	2000
Chloroform	ND	ug/L	1000
Chloromethane	ND	ug/L	2000 1000
Dibromochloromethane 1,1-Dichloroethane	ND ND	ug/L ug/L	1000
1,2-Dichloroethane	ND	ug/L	1000
1,1-Dichloroethene	ND	ug/L	1000
1,2-Dichloroethene			
(total)	ND	ug/L	1000
1,2-Dichloropropane	ND ND	ug/L ug/L	1000 1000
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	ND	ug/L	1000
Ethylbenzene	ND	ug/L	1000
2-Hexanone	ND	ug/L	2000
Methylene chloride	10000	ug/L	1000
4-Methyl-2-pentanone	ND	ug/I	2000
(MIBK) Styrene	ND	ug/L ug/L	1000
1,1,2,2-Tetrachloroethane	ND	ug/L	1000
Tetrachloroethene	ND	ug/L	1000
Toluene	ND	ug/L	1000
1,1,1-Trichloroethane	ND ND	ug/L	1000 1000
1,1,2-Trichloroethane Trichloroethene	1400	ug/L ug/L	1000
Vinyl acetate	ND	ug/L	2000
Vinyl chloride	ND	ug/L	2000
Xylenes (total)	ND	ug/L	1000
4-Methyl-2-pentanone	ND	ug/L	1000 1000
Hexane	ND	ug/L	1000

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants Client ID: MW-19

Lab ID:

026066-0011-SA

Matrix:

WATER

% %

%

Authorized:

03 NOV 92

Sampled: 02 NOV 92 Prepared: 05 NOV 92

Received: 03 NOV 92 Analyzed: 10 NOV 92

Surrogate

Recovery

Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4

106 98 103

ND = Not detected NA = Not applicable

Reported By: Dianne Buckheister

Client Name: Woodward-Clyde Consultants

Client ID: TRIP BLANK

Lab ID: 026066-0012-TB

Matrix: WATER Sampled: 02 NOV 92 Received: 03 NOV 92 Authorized: 03 NOV 92 Prepared: 05 NOV 92 Analyzed: 09 NOV 92

Parameter	Result	Units	Reporting Limit
Acetone	ND	ug/L	10
Benzene	ND	ug/L	5.0
Bromodichloromethane	ND	ug/L	5.0
Bromoform	ND	ug/L	5.0
Bromomethane	ND	ug/L	10
2-Butanone (MEK)	ND	ug/L	10
Carbon disulfide	ND	ug/L	5.0
Carbon tetrachloride	ND	ug/L	5.0
Chlorobenzene	ND	ug/L	5.0
Chloroethane	ND	ug/L	10
Chloroform	ND	ug/L	5.0
Chloromethane	ND	ug/L	10
Dibromochloromethane	ND	ug/L	5.0
1,1-Dichloroethane	ND ND	ug/L	5.0 5.0
1,2-Dichloroethane	ND	ug/L	5.0
1,1-Dichloroethene	ND	ug/L	5.0
1,2-Dichloroethene (total)	ND	ug/L	5.0
1,2-Dichloropropane	ND	ug/L	5.0
cis-1,3-Dichloropropene	ND	ug/L	5.0
trans-1,3-Dichloropropene	ND	ug/L	5.0
Ethylbenzene	ND	ug/L	5.0
2-Hexanone	ND	ug/L	10
Methylene chloride	ND	ug/L	5.0
4-Methyl-2-pentanone		-3/ -	
(MIBK)	ND	ug/L	10
Styrene	ND	ug/L	5.0
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0
Tetrachloroethene	ND	ug/L	5.0
Toluene	ND	ug/L	5.0
1,1,1-Trichloroethane	ND	ug/L	5.0
1,1,2-Trichloroethane	ND	ug/L	5.0
Trichloroethene	ND	ug/L	5.0
Vinyl acetate	ND	ug/L	10
Vinyl chloride	ND	ug/L	10
Xylenes (total)	ND	ug/L	5.0
4-Methyl-2-pentanone	ND ND	ug/L	5.0
Hexane	MD	ug/L	5.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: TRIP BLANK Lab ID: 026066-0012-TB

Sampled: 02 NOV 92 Prepared: 05 NOV 92 Received: 03 NOV 92 WATER Matrix: Analyzed: 09 NOV 92 03 NOV 92 Authorized:

Recovery Surrogate

102 97 % % Toluene-d8 4-Bromofluorobenzene % 94 1,2-Dichloroethane-d4

ND = Not detected NA = Not applicable

Reported By: Steven Francis

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
026066-0001-SA 026066-0002-SA 026066-0003-SA 026066-0004-SA 026066-0005-SA 026066-0006-SA 026066-0007-SA 026066-0008-SA 026066-0009-SA 026066-0010-SA 026066-0011-SA 026066-0012-TB	AQUEOUS	624-A 624-A 624-A 624-A 624-A 624-A 624-A 624-A 624-A 624-A	26 OCT 92-B 02 NOV 92-H 26 OCT 92-B 02 NOV 92-H 05 NOV 92-H 05 NOV 92-H 05 NOV 92-H 26 OCT 92-B 26 OCT 92-B 26 OCT 92-B 05 NOV 92-H 26 OCT 92-B	08 NOV 92-B 06 NOV 92-H 08 NOV 92-H 09 NOV 92-H2 09 NOV 92-H2 09 NOV 92-H2 08 NOV 92-B 08 NOV 92-B 08 NOV 92-B 09 NOV 92-B 08 NOV 92-B 09 NOV 92-B

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte		Conc Spiked	entration DCS1	Measured DCS2	AVG		uracy age(%) Limits	Precis (RPD) DCS Li)
Category: 624-A Matrix: AQUEOUS QC Lot: 26 OCT 92-B Concentration Units:	ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	50.0 44.7 43.6 49.1 51.1	48.6 44.6 42.8 48.5 49.6	49.3 44.6 43.2 48.8 50.4	99 89 86 98 101	56-138 76-109 78-119 82-114 84-117	2.8 0.2 1.9 1.2 3.0	20 13 12 13 10
Category: 624-A Matrix: AQUEOUS QC Lot: 02 NOV 92-H Concentration Units:	ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	42.0 45.1 42.4 48.8 51.3	40.2 39.5 39.0 44.2 45.3	41.1 42.3 40.7 46.5 48.3	82 85 81 93 97	56-138 76-109 78-119 82-114 84-117	4.4 13 8.4 9.9 12	20 13 12 13 10
Category: 624-A Matrix: AQUEOUS QC Lot: 05 NOV 92-H Concentration Units:	ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	49.8 46.2 46.5 49.9 51.5	44.9 42.1 42.3 44.2 45.0	47.4 44.2 44.4 47.0 48.2	95 88 89 94 97	56-138 76-109 78-119 82-114 84-117	10 9.3 9.5 12 13	20 13 12 13 10

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte	Concentration Spiked Measured						
Category: 624-A Matrix: AQUEOUS QC Lot: 26 OCT 92-B QC Run: Concentration Units: ug/L	08 NOV 92-B						
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.0 47.1 50.0 47.8 50.0 49.0	94 82-112 96 83-113 98 90-112					
Category: 624-A Matrix: AQUEOUS QC Lot: 02 NOV 92-H QC Run: Concentration Units: ug/L	06 NOV 92-H						
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.0 47.3 50.0 50.9 50.0 51.2	95 82-112 102 83-113 102 90-112					
Category: 624-A Matrix: AQUEOUS QC Lot: 05 NOV 92-H QC Run: Concentration Units: ug/L	09 NOV 92-H2						
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8	50.0 48.0 50.0 48.5 50.0 51.9	96 82-112 97 83-113 104 90-112					

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: WATER QC Lot: 26 OCT 92-B QC Ru	in: 08 NOV 92-B		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane 1,1-Dichloromethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: WATER QC Lot: 02 NOV 92-H QC Run:	06 NOV 92-H		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 10 10 5.0 5.0 5.0 10 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 10 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone Hexane	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 10 10 5.0 5.0

 $J = Result \ is \ detected \ below \ the \ reporting \ limit \ or \ is \ an \ estimated \ concentration.$

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: WATER QC Lot: 05 NOV 92-H QC	Run: 09 NOV 92-H2		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-chloroethane 1,2-Dichloroethane 1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene crans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride 4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) 4-Methyl-2-pentanone	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total)	ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 10 10

Kocky Mountain Analytical Laboratory 4955 Yarrow Street Arvada, CO 80002 303/421-6611 FAX: 303/431-7171

CHAIN OF CUSTODY						303/421-0011 TAX. 303/431-7171							
ENSECO CLIENT P.					SAMPLE SAFE TM CONDITIONS								
V	DEODNA	20 (Lyok Consultants	-	-	PACKED BY	D. Ka	000			SEAL NUMBER	NA	
PROJECT	+, , +1; ,	320	OMain, Kroksky	TA 916-	1343	SEAL INTAC	T UPON RECEIPT		G COMPANY		CONDITION OF	CONTENTS	
SAMPLING COMPA	NY \	()				SEALED FOR	SHIPPING BY				INITIAL CONTE	TS TEMP.	°C
SAMPLING SITE) 10 ·	11/0	1 1 - 1			SEAL NUMB	ER AIA		SAMPLING STATE			/	
TEAM LEADER	JEC M.	N.K	reak K, IA			SEAL INPAC	T UPON RECEIPT		Done	CONTENTS TEM	PERATURE LPO	N RECEIPT BY LA	
	PAULDK	5000			_	Yes		No No			5,2		°C
DATE	TIME	-	SAMPLE ID/DESCRIPTION		SAME	PLE TYPE	# CONTAINERS	AN	ALYSIS PARA	METERS		REMARKS	
11/2/12	0800	MW	-10	01	Wite	7 (3		volatiles -			#2007ea 2004 of Constraint and Constraint	
',;	0815	MW-	- 1 (02	/	,	. "		'''				
11	0830	MW	-13	०३	1,		/,		/··				
"	0845	MW	- 13 A	٥٠١	,	,	٠,	′,					
(<i>1</i>	0900	MW	- 13B	05	,	′/	4		′/				
/1	0915	MW	- 14	06		//	/1		"				
11	0930	MW	- 16	07		"	1,		11			•	
11	0145	MW	1-17A	08	/	,	1,		"				
′1	1000	Mu	1-17B	09	/	·/	10		//		0		
11	1015	Mu	1-18	16	1	,	1,		11				
	C	CUSTODY	TRANSFERS PRIOR TO SHIPPING			SHIPPING DETAILS							
RELINQU	ISHED BY (SIGN	NED)	RECEIVED BY (SIGNED)	DATE	TIME	DELIVERED	TO SHIPPER BY	DK	06:06				
11/2/12 4:451				1:45PM	METHOD OF	-ederal	Exp	105511		5346	6762	54	
	1						MAC OJECT NÚMBER		Hoth	1		11-3-4	12 08:38
							26069						
ENS-1133				White	- CHENT	Pink -							

rocky Mountain Analytical Laboratory

4955 Yarrow Street Arvada, CO 80002

303/421-6611 FAX: 303/431-7171

									SAMPLE SAI	FETM CONDITI	ONS	
ENSECO CLIENT	1 1	1 (1	1	\		PACKED BY	T V				SEAL NUMBER	
PROJECT Wood wixd () ydc (ons.) tints					D.Kocovi NA							
PROJECT	1 , 1	. ^				SEAL INTACT UPON RECEIPT BY SAMPLING COMPANY CONDITION OF CONTENTS						
T.C.	1.4.1	Baco Win	'n Kedede, IA	4/1731/3							1+	
SAMPLING COMPA	NY /	/ 1	,			SEALED FO	R SHIPPING BY				INITIAL CONTENTS TEMP.	
W:	ocalway of	(lyd	<u> </u>			1	XX ccc	01			(4	°C
SAMPLING SITE	10.	(1)	1			SEAL NUMB	ER . ! A		SAMPLING STATU			
320 TEAM LEADER	0 M.i. N	160	Kuk, IA				NA		Done	Continu		
TEAM LEADER	N.	12					T UPON RECEIPT	No No		CONTENTS TEM	PERATURE UPON RECEIPT BY	°C
	DAVID	1/20	> OP			Yes				<u> </u>	Did	
DATE	TIME		. SAMPLE ID/DESCRIPTION	N .	SAMP	LE TYPE	# CONTAINERS	AN	ALYSIS PARA	METERS	REMARK	S
11/2/92	0800	MW-	-19	11	W.	ter	3	TCL	Volatiles	+ MIBK,		
11-11-			<u> </u>	•				FIXX	1 500	TEAT.		
112/12		Ti	Blanks	12		′′	11		//			
1 1		\									,	
					 		 					
							 					
												, , , , , , , , , , , , , , , , , , , ,
						T	<u> </u>					
		USTODY TRA	NSFERS PRIOR TO SHIPPING	······································	1				SHIPPI	NG DETAILS		
RELINQU	ISHED BY (SIGN	IED)	RECEIVED BY (SIGNED)	DATE	TIME	DELIVERED	TO SHIPPER BY	Koc	5.6			
11.1	1			111	1.100	METHOD OF		1	+		AIRBILL NUMBER	1
1),.1	K			11/2/12 4	1:45A	1	Fede	111	=X 0181	551	53666762	54
	,			' '		RECEIVED F	1 LINIT		SIGNED		DATE/TIP	97 838
							CWIAL		The	1	111-3	77 000
						ENSECO PR	OJECT NÚMBER					

CHAIN OF CUSTODY

ANALYTICAL RESULTS

FOR

WOODWARD-CLYDE CONSULTANTS
ENSECO-RMAL NO. 027367

FEBRUARY 5, 1993

ANALYTICAL RESULTS

FOR

WOODWARD-CLYDE CONSULTANTS

ENSECO-RMAL NO. 027367

FEBRUARY 5, 1993

Reviewed by:

DOU WOUD Jean Zimmerman

Enseco Incorporated 4955 Yarrow Street Arvada, Colorado 80002

303/421-6611 Fax: 303/431-7171

Introduction

This report presents the analytical results as well as supporting information to aid in the evaluation and interpretation of the data and is arranged in the following order:

- o Sample Description Information
- o Analytical Test Requests
- o Analytical Results
- o Quality Control Report

Samples 027367-0001 and -0002 were diluted for Method 8240 due to the presence of target compounds in excess of the linear range. The reporting limits have been adjusted relative to the required dilution.

Butanol was searched for by mass chromatogram and was not detected in any of the samples.

Sample Description Information

The Sample Description Information lists all of the samples received in this project together with the internal laboratory identification number assigned for each sample. Each project received at Enseco - RMAL is assigned a unique six digit number. Samples within the project are numbered sequentially. The laboratory identification number is a combination of the six digit project code and the sample sequence number.

Also given in the Sample Description Information is the Sample Type (matrix), Date of Sampling (if known) and Date of Receipt at the laboratory.

Analytical Test Requests

The Analytical Test Requests lists the analyses that were performed on each sample. The Custom Test column indicates where tests have been modified to conform to the specific requirements of this project.

SAMPLE DESCRIPTION INFORMATION for Woodward Clyde Consultants

Lab ID	Client ID	Matrix	Sampled Date Time	Received Date
027367-0001-SA 027367-0002-SA 027367-0003-SA 027367-0004-TB	MW-13 MW-13B	AQUEOUS AQUEOUS AQUEOUS AQUEOUS	27 JAN 93 08:19 27 JAN 93 08:30 27 JAN 93 08:49 27 JAN 93	28 JAN 93

ANALYTICAL TEST REQUESTS for Woodward Clyde Consultants

Lab ID:	Group	Analysis Description	Custom
027367	Code		Test?
0001 - 0004	A	Volatile Organics Target Compound List (TCL) Screen - Volatile Organics	Y Y N

Client Name: Woodward-Clyde Consultants

Client ID:

Lab ID:

MW-13A 027367-0001-SA

Matrix: Authorized: **AQUEOUS**

28 JAN 93

Sampled: 27 JAN 93 Prepared: 01 FEB 93

Received: 28 JAN 93 Analyzed: 03 FEB 93

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,1-Dichloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 250 250 250 500 250 250 250 250 250
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND 2800 ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	250 250 250 250 250 250 500
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	500 250 250 250 250 250 250 500 250 250
Surrogate	Recovery		
Toluene-d8	102	%	

Toluene-d8

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID:

MW-13A

027367-0001-SA

Lab ID: Matrix:

AQUEOUS

Authorized:

28 JAN 93

Sampled: 27 JAN 93 Prepared: 01 FEB 93

Received: 28 JAN 93 Analyzed: 03 FEB 93

Surrogate

Recovery

4-Bromofluorobenzene 1,2-Dichloroethane-d4

96 109 %%

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID:

MW-13

027367-0002-SA

Lab ID: Sampled: 27 JAN 93 Prepared: 01 FEB 93 Received: 28 JAN 93 Analyzed: 03 FEB 93 AQUEOUS Matrix: 28 JAN 93 Authorized:

	Parameter	Result	Units	Reporting Limit
	Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5000 2500 2500 2500 5000 2500 2500 2500
-	1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND O3000	ug/L ug/L ug/L ug/L ug/L ug/L	2500 2500 2500 2500 2500 5000 2500
	4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND 19000 ND ND 4300 ND ND ND 3000 ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5000 2500 2500 2500 2500 2500 2500 5000 5000 2500
	Surrogate	Recovery		
	Toluene-d8	100	%	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-13

027367-0002-SA

Lab ID: Matrix:

AQUEOUS 28 JAN 93

Authorized:

Sampled: 27 JAN 93 Prepared: 01 FEB 93

Received: 28 JAN 93 Analyzed: 03 FEB 93

Surrogate

Recovery

4-Bromofluorobenzene 1,2-Dichloroethane-d4

95 106 %%

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID: MW-13B

Lab ID: 027367-0003-SA

Matrix: AQUEOUS Sampled: 27 JAN 93 Received: 28 JAN 93 Authorized: 28 JAN 93 Prepared: 01 FEB 93 Analyzed: 02 FEB 93

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,1-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 10 10 5.0 5.0 10 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND 5.9	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND 7.6 ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Surrogate	Recovery		

Toluene-d8 101 %

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: MW-13B

Lab ID:

027367-0003-SA

Matrix:

AQUEOUS

Sampled: 27 JAN 93 Prepared: 01 FEB 93

Received: 28 JAN 93 Analyzed: 02 FEB 93

28 JAN 93 Authorized:

Surrogate

Recovery

4-Bromofluorobenzene 1,2-Dichloroethane-d4 103

%%

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants

Client ID: Lab ID:

TRIP BLANK 027367-0004-TB

Sampled: 27 JAN 93 Prepared: 01 FEB 93 AQUEOUS Received: 28 JAN 93 Matrix: 28 JAN 93 Analyzed: 01 FEB 93 Authorized:

Parameter	Result	Units	Reporting Limit
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethene	ND N	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND 5.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10 5.0
Surrogate	Recovery		

Toluene-d8

98

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Steven Francis

Client Name: Woodward-Clyde Consultants Client ID: TRIP BLANK Lab ID: 027367-0004-TB

Matrix:

AQUEOUS

Received: 28 JAN 93

Authorized:

28 JAN 93

Sampled: 27 JAN 93 Prepared: 01 FEB 93

Analyzed: 01 FEB 93

Surrogate

Recovery

4-Bromofluorobenzene 1,2-Dichloroethane-d4

102 97

%

ND = Not detected NA = Not applicable

Reported By: Steven Francis

QC LOT ASSIGNMENT REPORT Volatile Organics by GC/MS

Laboratory Sample Number	QC Matrix	QC Category	QC Lot Number (DCS)	QC Run Number (SCS/BLANK)
027367-0001-SA	AQUEOUS	624-A	02 FEB 93-E	03 FEB 93-E
027367-0002-SA	AQUEOUS	624-A	02 FEB 93-E	03 FEB 93-E
027367-0003-SA	AQUEOUS	624-A	02 FEB 93-E	02 FEB 93-E
027367-0004-TB	AQUEOUS	624-A	29 JAN 93-E	01 FEB 93-E

DUPLICATE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

			entration				uracy	Precis	
Analyte		Spiked	DCS1	Measured DCS2	AVG	DCS	age(%) Limits	(RPD) DCS Li	
Category: 624-A Matrix: AQUEOUS QC Lot: 02 FEB 93-E Concentration Units:	ug/L								
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	41.0 42.8 40.0 44.5 43.8	41.4 42.4 40.8 44.9 44.6	41.2 42.6 40.4 44.7 44.2	82 85 81 89 88	56-138 76-109 78-119 82-114 84-117	1.0 0.9 2.0 0.9 1.8	20 13 12 13 10
Category: 624-A Matrix: AQUEOUS QC Lot: 29 JAN 93-E Concentration Units:	ug/L			*					
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene		50 50 50 50 50	54.3 52.8 48.7 53.4 48.8	53.9 53.7 49.7 53.2 48.4	54.1 53.2 49.2 53.3 48.6	108 107 98 107 97	56-138 76-109 78-119 82-114 84-117	0.7 1.7 2.0 0.4 0.8	20 13 12 13 10

Calculations are performed before rounding to avoid round-off errors in calculated results.

SINGLE CONTROL SAMPLE REPORT Volatile Organics by GC/MS

Analyte		Concentrati Spiked Mea		Accur SCS	acy(%) Limits
Category: 624-A Matrix: AQUEOUS QC Lot: 02 FEB 93-E QC Concentration Units: ug/l	Run: 03 FEB 93	·E			
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		50.0 50.0 50.0	55.3 48.3 49.8	111 97 100	82-112 83-113 90-112
Category: 624-A Matrix: AQUEOUS QC Lot: 02 FEB 93-E QC Concentration Units: ug/l	Run: 02 FEB 93 L	-E			
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		50.0 50.0 50.0	51.9 48.5 50.0	104 97 100	82-112 83-113 90-112
Category: 624-A Matrix: AQUEOUS QC Lot: 29 JAN 93-E QC Concentration Units: ug/	Run: 01 FEB 93 L	- E			
1,2-Dichloroethane-d4 4-Bromofluorobenzene Toluene-d8		50.0 50.0 50.0	51.3 50.0 47.4	103 100 95	82-112 83-113 90-112

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT Volatile Organics by GC/MS

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: AQUEOUS QC Lot: 02 FEB 93-E QC Run:	03 FEB 93-E		
Acetone Benzene Bromodichloromethane	8.5 ND ND	ug/L ug/L ug/L	10 J 5.0 5.0
Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane	ND ND 3.8 ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	5.0 10 10 5.0 5.0 5.0 10 5.0 10 5.0 5.0
1,2-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethene	ND ND	ug/L ug/L ug/L	5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND 3.3	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 10 5.0 J
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10 5.0

 $[\]mbox{\bf J} = \mbox{\bf Result}$ is detected below the reporting limit or is an estimated concentration.

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: AQUEOUS QC Lot: 02 FEB 93-E QC Run: 02 FE	В 93-Е		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethene 1,2-Dichloroethene	ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 10 10 5.0 5.0 5.0 10 5.0 10 5.0 5.0
(total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND 2.5	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 5.0 10 5.0 J
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10 5.0 5.0

 $^{{\}sf J}={\sf Result}$ is detected below the reporting limit or is an estimated concentration.

METHOD BLANK REPORT Volatile Organics by GC/MS (cont.)

Analyte	Result	Units	Reporting Limit
Test: 8240CP-TCL-AP Matrix: AQUEOUS QC Lot: 29 JAN 93-E QC Run:	01 FEB 93-E		
Acetone Benzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane	5.2 ND ND ND ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 J 5.0 5.0 5.0 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.
1,2-Dichloroethene (total) 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene 2-Hexanone Methylene chloride	ND ND ND ND ND ND 3.0	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 5.0 5.0 5.0 10 5.0
4-Methyl-2-pentanone (MIBK) Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Vinyl acetate Vinyl chloride Xylenes (total) Hexane	ND ND ND ND ND ND ND ND ND ND	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	10 5.0 5.0 5.0 5.0 5.0 5.0 10 10 5.0 5.0

J = Result is detected below the reporting limit or is an estimated concentration.

Rocky Mountain Analytical Laboratory 4955 Yarrow Street Arvada, CO 80002 303/421-6611 FAX: 303/431-7171

OLIAIAI	OF	01	LOT	01	111
CHAIN	UT	(, (121	() I	JY

						SAMPLE SAFE ^{IM} CONDITIONS								
Woodward - Clyde Consultants						PACKED BY	your (mycond	SEAL NUMBER					
Sheller Globe 9167343					SEAL INTACT UPON RECEIPT BY SAMPLING COMPANY					CONDITION OF CONTENTS				
SAMPLING COMPANY						CEALED FOR	R SHIPPING BY			INITIAL CONTENTS	77115			
W C L							SEALED FOR	K SHIPPING BY		INITIAL CONTENTS TEMP.				
										°C				
3200 Main							SEAL NUMBER SAMPLING STATUS Done Continui					ing Until		
Cere Papinako					SEAL INTAC	T UPON RECEIPT	T BY LAB. CONTENTS TEN			EMPERATURE LPON RECEIPT BY LAB				
DATE TIME SAMPLE ID/DESCRIPTION					CAAAD	1				AAETEDC	5,3 °C REMARKS			
DATE	TIME	SAMPLE ID/ DESCRIPTION		4 .	SAMI	LE TIPE	T							
1/27/93	8:15	MW	-13 A		01	Water	-					Method 8240		
-11-	8:30	MW	- 13		02	И	- 3(40.1) - 11 - 11 - 11 - 11 - 11 - 11 - 11 -				-11			
_11 —	8:45	MW	- 13 13		03	- 11 -	_	3(40.1)						
-11-	N,'A	Trip Blank		04	1									
				*										
	 					-								
-														
										*				
3			######################################									101	The second secon	1

	(CUSTODY	TRANSFERS PRIOR TO SH	IPPING						SHIPPI	NG DETAILS			
RELINQUISHED BY (SIGNED) RECEIVED BY (SIGNED) DATE T					TIME	DELIVERED TO SHIPPER BY								
gen J	Egenote		5	0.470.44			METHOD OF	1-	ed E,		;	AIRBILL NUMBER		
							RECEIVED FO	MAL		SIGNED HAM	y Lun	nes 1/2	DATE/TIME	09:30
	RECEIVED FOR LAB SIGNED TO DATE OF THE PROPERTY OF THE PROPERT								-4-1-1					
ENS-1133					Wh!s-	- CLIENT	Pink -							**************************************
					AAUITE	- CREWI	rink -	LAD						